
4An Algebraist's View on Border BasesAhim Kehrein1, Martin Kreuzer1, and Lorenzo Robbiano21 Universit�at Dortmund, Fahbereih Mathematik, 44221 Dortmund, Germanyahim.kehrein�mathematik.uni-dortmund.demartin.kreuzer�mathematik.uni-dortmund.de2 Dipartimento di Matematia, Via Dodeaneso 35, 16146 Genova, Italyrobbiano�dima.unige.itSummary. This hapter is devoted to laying the algebrai foundations for borderbases of ideals. Using an order ideal O, we desribe a zero-dimensional ideal from theoutside. The �rst and higher borders of O an be used to measure the distane of aterm from O and to de�ne O-border bases. We study their existene and uniqueness,their relation to Gr�obner bases, and their haraterization in terms of ommutingmatries. Finally, we use border bases to solve a problem oming from statistis.4.1 Introdution El in�nito tango me lleva haia todo[The in�nite tango takes me towards everything℄(Jorge Luis Borges)The third author was invited to teah a ourse at the CIMPA shool inJuly 2003. When the time ame to write a ontribution to the present volume,he was still inspired by the tunes of lassial tango songs whih had beenoating in his mind sine his stay in Buenos Aires. He had the idea to reatesome variations on one of the themes of his letures. Together with the �rstand seond authors, he formed a trio of algebraists. They started to olletsattered phrases and tunes onneted to the main theme, and to rework theminto a survey on border bases. Sine the idea was welomed by the organizers,you have now the opportunity to enjoy their omposition.In the last few years it has beome inreasingly evident how Gr�obnerbases are hanging the mathematial landsape. To use a lively metaphor, wean say that by onsidering a Gr�obner basis of an ideal I in the polynomialring P = K[x1; : : : ; xn℄, we are looking at I from the inside, i.e. by desribinga speial set of generators. But a Gr�obner basis grants us another perspetive.We an look at I from the outside, i.e. by desribing a set of polynomials whihform a K-vetor spae basis of P=I , namely the set of terms outside LT�(I)for some term ordering �. However, Gr�obner bases are not optimal from the



170 A. Kehrein, M. Kreuzer, and L. Robbianolatter point of view, for instane, beause the bases they provide tend to benumerially ill-behaved.This leads us to one of the main ideas behind the onept of a borderbasis. We want to �nd more \general" systems of generators of I whih giverise to a K-basis of P=I . Quotation marks are in order here, sine so far thegeneralization only works for the sublass of zero-dimensional ideals I . In thezero-dimensional ase, the theory of border bases is indeed an extension ofthe theory of Gr�obner bases, beause there are border bases whih annot beassoiated to Gr�obner bases. Moreover, border bases do not require the hoieof a term ordering. Our hope is that the greater freedom they provide willmake it possible to onstrut bases of P=I having additional good propertiessuh as numerial stability or symmetry.Even if these onsiderations onvine you that studying border bases isuseful, you might still ask why we want to add this survey to the urrent lit-erature on that topi? Our main reason is that we believe that the algebraifoundations of border bases have not yet been laid out solidly enough. Impor-tant ontributions are sattered aross many publiations (some in less widelydistributed journals), and do not enjoy a uni�ed terminology or a oherent setof hypotheses. We hope that this paper an be used as a �rst solid foundationof a theory whih will surely expand quikly.Now let us look at the ontent more losely. In Setion 4.2 we desribesome tehniques for treating pairwise ommuting endomorphisms of �nitelygenerated vetor spaes. In partiular, we desribe a Buhberger-M�oller typealgorithm (see Theorem 4.2.7) for omputing the de�ning ideal of a �nite setof ommuting matries. Given pairwise ommuting endomorphisms '1; : : : ; 'nof a �nite dimensional K-vetor spae V , we an view V as a P -module viaf � v = f('1; : : : ; 'n)(v) for f 2 P and v 2 V . Then Theorem 4.2.9 yieldsan algorithm for heking whether V is a yli P -module, i.e. whether it isisomorphi to P=I for some zero-dimensional ideal I � P .Setion 4.3 is a tehnial interlude where order ideals, borders, indies,and marked polynomials have their solos. An order ideal is a �nite set ofterms whih is losed under taking divisors. We use order ideals to desribea zero-dimensional ideal \from the outside". The �rst and higher borders ofan order ideal an be used to measure the \distane" of a term from theorder ideal. The main tune in Setion 4.3 is played by the Border DivisionAlgorithm 4.3.10. It imitates the division algorithm in Gr�obner basis theoryand allows us to divide a polynomial by a border prebasis, i.e. by a list ofpolynomials whih are \marked" by the terms in the border of an order ideal.And then, as true stars, border bases appear late in the show. They enterthe stage in Setion 4.4 and solve the task of �nding a system of generators ofa zero-dimensional polynomial ideal having good properties. After we disussthe existene and uniqueness of border bases (see Theorem 4.4.4), we studytheir relation to Gr�obner bases (see for instane Propositions 4.4.6 and 4.4.9).Then we de�ne normal forms with respet to an order ideal, and use border



4 Border Bases 171bases to ompute them. Many useful properties of normal forms are olletedin Proposition 4.4.13.In the �nal part of Setion 4.4, we explain the onnetion between borderbases and ommuting matries. This variation leads to the fundamental The-orem 4.4.17 whih haraterizes border bases in terms of ommuting matriesand opens the door for our main appliation. Namely, we use border basesto solve a problem oming from statistis. This appliation is presented inSetion 4.5, where we disuss the statistial bakground and explain the roleof border bases in this �eld.Throughout the text, we have tried to provide a generous number of ex-amples. They are intended to help the reader master the basis of the theoryof border bases. Moreover, we have tried to keep this survey as self-ontainedand elementary as possible. When we had to quote \standard results" ofomputer algebra, we preferred to rely on the book by the seond and thirdauthors [KR00℄. This does not mean that those results are not ontained inother books on the subjet; we were merely more familiar with it.Albert Einstein is said to have remarked that the seret of reativity wasto know how to hide ones soures. Sine none of us is Albert Einstein, wetry to mention all soures of this survey. We apologize if we are unaware ofsome important ontribution to the topi. First and foremost, we would like toaknowledge the work of Hans J. Stetter (see [AS88℄, [AS89℄, and [Ste04℄) whoused border bases in onnetion with problems arising in numerial analysis.Later H. Mihael M�oller reognized the usefulness of these results for omputeralgebra (see [M�ol93℄, [MS95℄, and [MT01℄). These pioneering works triggered aurry of further ativities in the area, most notably by Bernard Mourrain (seefor instane [Mou99℄) from the algorithmi point of view. A good portion ofthe material presented here is taken from the papers [CR97℄, [CR01℄, [KK03a℄,[Rob98℄, [Rob00℄, and [RR98℄. Moreover, many results we disuss are loselyrelated to other surveys in this volume.Naturally, muh work still has to be done; or, as we like to put it, there isstill a huge TODO-list. A path whih deserves further attention is the onne-tion between border bases and numerial omputation. Many ideas about theinterplay of numerial and symboli omputation were proposed by Stetter,but we believe that there remains a large gap between the two areas whihhas to be addressed by algebraists. What about the algorithmi aspets? Al-most no omputer algebra system has built-in failities for omputing borderbases. Naive algorithms for omputing border bases, e.g. algorithms basedon Gr�obner basis omputations, require substantial improvements in order tobe pratially feasible. This is an area of ongoing researh. Some results inthis diretion are ontained in Chapter 3. On the theoretial side we an askwhether the analogy between border bases and Gr�obner bases an be furtherextended. First results in this diretion are ontained in [KK03a℄, but thereappears to be ample sope for extending the algebrai theory of border bases.



172 A. Kehrein, M. Kreuzer, and L. RobbianoFinally, wouldn't it be wonderful to remove the hypothesis that I is zero-dimensional, i.e. to develop a theory of border bases for the ase when P=Iis an in�nite dimensional vetor spae? At the moment, despite the in�nitetango, we are unfortunately laking the inspiration to ahieve this goal. Someideas are presented in [Ste04℄, Ch. 11.As for our notation, we refer the readers to [KR00℄. In partiular, through-out this paper we let P = K[x1; : : : ; xn℄ be a polynomial ring over a �eld K.A polynomial of the form x�11 � � �x�nn , where �1; : : : ; �n 2 N, is alled a term(or a power produt). The monoid of all terms in P is denoted by Tn.4.2 Commuting endomorphisms Tango has the habit of waiting(An��bal Troilo, virtuoso bandeoneonist)Every polynomial ideal I is aompanied by the quotient algebra P=I .A zero-dimensional ideal I orresponds to an algebra P=I of �nite ve-tor spae dimension over K. The �rst part of this setion reviews how theK-algebra P=I is haraterized by its P -module struture and how the latter isgiven by n pairwise ommuting multipliation endomorphisms of theK-vetorspae P=I . In partiular, for zero-dimensional ideals these endomorphisms anbe represented by pairwise ommuting multipliation matries. Then we ad-dress the onverse realization problem: Whih olletions of n pairwise om-muting matries an be preassigned as multipliation matries orrespondingto a zero-dimensional ideal? A neessary and suÆient ondition is that thesematries indue a yli P -module struture. Whether a P -module strutureon a �nite dimensional K-vetor spae is yli an be heked e�etively {an algorithm is presented in the seond part.4.2.1 Multipliation endomorphismsGiven a K-vetor spae V whih arries a P -module struture, there existendomorphisms of V whih are assoiated to the multipliations by the inde-terminates.De�nition 4.2.1. For i = 1; : : : ; n, the P -linear map'i : V �! V de�ned by v 7! xi vis alled the ith multipliation endomorphism of V .The multipliation endomorphisms of V are pairwise ommuting, i.e. we have'i Æ'j = 'j Æ'i for i; j 2 f1; : : : ; ng. The prototype of suh a vetor spae isgiven by the following example.



4 Border Bases 173Example 4.2.2. Let I � P be an ideal. The quotient algebra P=I possesses anatural P -module struture P � P=I ! P=I given by (f; g + I) 7! fg + I .Hene there are anonial multipliation endomorphisms Xi : P=I �! P=Isuh that Xi(f + I) = xi f + I for f 2 P and i = 1; : : : ; n. Note that P=I is ayli P -module with generator 1 + I .Remark 4.2.3. Let '1; : : : ; 'n be pairwise ommuting endomorphisms of a ve-tor spae V . The following three onstrutions will be used frequently.1. There is a natural way of equipping V with a P -module struture suhthat 'i is the ith multipliation endomorphism of V , namely the struturede�ned byP � V �! V suh that (f; v) 7! f('1; : : : ; 'n)(v)2. There is a ring homomorphism� : P �! EndK(V ) suh that f 7! f('1; : : : ; 'n)3. Every ring homomorphism � : P �! EndK(V ) indues a P -module stru-ture on V via the rule f � v = �(f)(v).The following result allows us to ompute the annihilator of V , i.e. theideal AnnP (V ) = ff 2 P j f � V = 0g.Proposition 4.2.4. Let V be a K-vetor spae equipped with a P -modulestruture orresponding to a ring homomorphism � : P �! EndK(V ). Thenwe have AnnP (V ) = ker(�).Proof. By Remark 4.2.3, we have f � V = 0 if and only if �(f) = 0. �Of partiular interest are P -module strutures on V for whih V is a yliP -module. The following proposition shows that suh strutures are essentiallyof the type given in Example 4.2.2.Proposition 4.2.5. Let V be a K-vetor spae and a yli P -module. Thenthere exist an ideal I � P and a P -linear isomorphism� : P=I �! Vsuh that the multipliation endomorphisms of V are given by the formula'i = � ÆXi Æ��1 for i = 1; : : : ; n.Proof. Let w 2 V be a generator of the P -module V . Then the P -linear map~� : P �! V given by 1 7! w is surjetive. Let I = ker ~� be its kernel andonsider the indued isomorphism of P -modules� : P=I ! V . The P -linearityof � shows ��Xi(g + I)� = 'i��(g + I)� for 1 � i � n and g + I 2 P=I . �



174 A. Kehrein, M. Kreuzer, and L. RobbianoBy [KR00℄, Proposition 3.7.1, zero-dimensional ideals I � P are hara-terized by dimK(P=I) < 1. Hene, if the vetor spae V in this propositionis �nite dimensional, the ideal I is neessarily zero-dimensional. Now we wantto answer the question, given '1; : : : ; 'n, when is V a yli P -module viathe struture de�ned in Remark 4.2.3.1? We note that if the P -module V isyli, then there exists an element w 2 V suh that AnnP (w) = AnnP (V ).Proposition 4.2.6 (Charaterization of Cyli P-Modules).Let V be a K-vetor spae whih arries the struture of a P -module.1. Given w 2 V , we have AnnP (V ) � AnnP (w). In partiular, there exists aP -linear map 	w : P=AnnP (V ) �! V de�ned by f +AnnP (V ) 7! f � w.2. Let w 2 V. The map 	w is an isomorphism of P -modules if and onlyif w generates V as a P -module.Proof. The �rst laim follows from the de�nitions. To prove the seond laim,we note that if 	w is an isomorphism, then we have V = P � w. Conversely,suppose that V = P �w. Then the map 	w is surjetive. Let f 2 P be suh thatf+AnnP (V ) 2 ker(	w). Then f('1; : : : ; 'n) �w = 0 implies f('1; : : : ; 'n) = 0sine w generates V . Hene we see that f 2 AnnP (V ) and 	w is injetive. �4.2.2 Commuting matriesIn the remainder of this paper, we let V be a �nite-dimensional K-vetorspae and � its dimension. We �x a K-basis V = (v1; : : : ; v�) of V . Thusevery endomorphism of V an be represented by a matrix of size ��� overK.In partiular, when V is a P -module, then M1; : : : ;Mn denote the matriesorresponding to the multipliation endomorphisms '1; : : : ; 'n.Using the following variant of the Buhberger-M�oller algorithm, we analulate AnnP (V ) as the kernel of the omposite map� : P �! EndK(V ) �= Mat�(K)where � is the map de�ned in Remark 4.2.3.2. Moreover, the algorithmprovides a vetor spae basis of P=AnnP (V ). To failitate the formula-tion of this algorithm, we use the following onvention. Given a matrixA = (aij) 2 Mat�(K), we order its entries by letting aij � ak` if i < k,or if i = k and j < `. In this way we \atten" the matrix to a vetor in K�2 .Then we an redue A against a list of matries by using the usual Gau�ianredution proedure.Theorem 4.2.7 (The Buhberger-M�oller Algorithm for Matries).Let � be a term ordering on Tn, and let M1; : : : ;Mn 2 Mat�(K) be pairwiseommuting matries. Consider the following sequene of instrutions.M1. Start with empty lists G = [ ℄, O = [ ℄, S = [ ℄, N = [ ℄, and a list L = [1℄.



4 Border Bases 175M2. If L = [ ℄, return the pair (G;O) and stop. Otherwise let t = min�(L) anddelete it from L.M3. Compute t(M1; : : : ;Mn) and redue it against N = (N1 ; : : : ;Nk ) to obtainR = t(M1; : : : ;Mn)� kPi=1 iNi with i 2 KM4. If R = 0, then append the polynomial t �Pi isi to the list G, where sidenotes the ith element of S. Remove from L all multiples of t. Continuewith step M2.M5. If R 6= 0, then append R to the list N and t �Pi isi to the list S.Append the term t to O, and append to L those elements of fx1t; : : : ; xntgwhih are neither multiples of a term in L nor in LT�(G). Continue withstep M2.This is an algorithm whih returns the redued �-Gr�obner basis G of AnnP (V )and a list of terms O whose residue lasses form a K-vetor spae basisof P=AnnP (V ).Proof. Let I = AnnP (V ), and let H be the redued �-Gr�obner basis of I .First we prove termination. In eah iteration either step M4 or step M5is performed. By its onstrution, the list N always ontains linearly inde-pendent matries. Hene step M5, whih appends an element to N , an beperformed only �nitely many times. By Dikson's Lemma (see [KR00℄, Corol-lary 1.3.6), step M4 an be performed only �nitely many times. Thus thealgorithm terminates.To show orretness, we prove that after a term t has been treated by thealgorithm, the following holds: the list G ontains all elements of H whoseleading terms are less than or equal to t, and the list O ontains all elementsof Tn n LT�(I) whih are less than or equal to t.This is true after the �rst term t = 1 has been treated, i.e. appendedto O. Now suppose that the algorithm has �nished an iteration. By themethod used to append new terms to L in step M5, all elements of the set(x1O [ � � �xnO) n (O [ LT�(I)) are ontained in L. From this it follows thatthe next term t hosen in step M2 is the smallest term in Tn n (O [ LT�(I)).Furthermore, the polynomials appended to S in step M5 are supported in O.Hene the polynomial t�Pki=1 isi resulting from step M3 of the next iterationhas leading term t.Now suppose that R = 0 in step M4. By onstrution, the matrix of theendomorphism �(si) is Ni for i = 1; : : : ; k. Therefore the polynomial g =t �Pki=1 isi is an element of I = AnnP (V ). Sine the support of Pki=1 isiis ontained in O, the polynomial g is a new element of H .On the other hand, if R 6= 0 in step M5, then we laim that the term t isnot ontained in LT�(I). In view of the way we update L in step M5, theterm t is not in LT�(G) for the urrent list G. By indution, the term t isnot a proper multiple of a term in LT�(H). Furthermore, the term t is not



176 A. Kehrein, M. Kreuzer, and L. Robbianothe leading term of an element of H beause suh an element would be of theform t �Pki=1 0isi 2 I with 0i 2 K in ontradition to R 6= 0. Altogether itfollows that t is an element of Tn n LT�(I) and an be appended to O.In both ases we see that the laim ontinues to hold. Therefore, when thealgorithm terminates, we have omputed the desired lists G and O. �Let us illustrate the performane of this algorithm with an example.Example 4.2.8. Let V = Q3 , and let V = (e1; e2; e3) be its anonial basis.Sine the two matriesM1 = 0�0 1 10 2 10 1 11A and M2 = 0�0 1 00 1 10 1 01Aommute, they de�ne a Q[x; y℄-module struture on V . Let us follow the itera-tions of the algorithm in omputing the redued �-Gr�obner basis of AnnP (V ),where � = DegLex.1. t = 1, L = [ ℄, R = 0�1 0 00 1 00 0 11A = I3, N = [I3℄, S = [1℄, O = [1℄, L = [x; y℄.2. t = y,L = [x℄, R = 0�0 1 00 1 10 1 01A =M2, M = [I3;M2℄, S = [1; y℄, O = [1; y℄,L = [x; y2℄.3. t = x, L = [y2℄, R = 0�0 0 10 1 00 0 11A = M1 �M2, M = [I2;M2;M1 �M2℄,S = [1; y; x� y℄, O = [1; x; y℄, L = [x2; xy; y2℄.4. t = y2, L = [x2; xy℄,R = 0�0 0 00 0 00 0 01A =M22�M2�(M1�M2), G = [y2�x℄.5. t = xy, L = [x2℄, R = 0�0 0 00 0 00 0 01A =M1M2 � 2M2 � (M1 �M2),G = [y2 � x; xy � x� y℄.6. t = x2, L = [ ℄, R = 0�0 0 00 0 00 0 01A =M21 � 3M2 � 2(M1 �M2),G = [y2 � x; xy � x� y; x2 � 2x� y℄.Thus we have AnnP (V ) = (y2�x; xy�x� y; x2� 2x� y), and O = f1; x; ygrepresents a K-basis of P=AnnP (V ).Now we are ready for the main algorithm of this subsetion: we an heke�etively whether a P -module struture given by ommuting matries de�nesa yli module.



4 Border Bases 177Theorem 4.2.9 (Cyliity Test).Let V be a �nite dimensional K-vetor spae with basis V = (v1; : : : ; vm),and let '1; : : : ; 'n be pairwise ommuting endomorphisms of V given by theirrespetive matries M1; : : : ;Mn. We equip V with the P -module struturede�ned by '1; : : : ; 'n. Consider the following sequene of instrutions.C1. Using Theorem 4.2.7, ompute a tuple of terms O = (t1; : : : ; t�) whoseresidue lasses form a K-basis of P=AnnP (V ).C2. If dimK(V ) 6= �, then return "V is not yli" and stop.C3. Let z1; : : : ; z� be further indeterminates and A 2 Mat�(K[z1; : : : ; z�℄) thematrix whose olumns are ti(M1; : : : ;Mn) � (z1; : : : ; z�)tr for i = 1; : : : ; �.Compute the determinant d = det(A) 2 K[z1; : : : ; z�℄.C4. Chek if there exists a tuple (1; : : : ; �) 2 K� suh that the polynomialvalue d(1; : : : ; �) is non-zero. In this ase return "V is yli" andw = 1v1 + � � �+ �v�. Then stop.C5. Return "V is not yli" and stop.This is an algorithm whih heks whether V is a yli P -module via'1; : : : ; 'n and, in the aÆrmative ase, omputes a generator.Proof. This proedure is learly �nite. Hene we only have to prove orret-ness. By Proposition 4.2.6, we have to hek whether 	w : P=AnnP (V ) �! Vis an isomorphism for some w 2 V . For this it is neessary that the dimen-sions of the two vetor spaes agree. This ondition is heked in step C2.Then we use the basis elements f�t1; : : : ; �t�g and examine their images for lin-ear independene. Sine we have 	w(�ti) = ti('1; : : : ; 'n)(w) for i = 1; : : : ; �,the map 	w is an isomorphism for some w 2 V if and only if the vetorsfti(M1; : : : ;Mn)(1; : : : ; �)tr j 1 � i � �g are K-linearly independent forsome tuple (1; : : : ; �) 2 K�. This is heked in step C4. �If the �eld K is in�nite, the hek in step C4 an be simpli�ed to hekingd 6= 0. For a �nite �eld K, we an, in priniple, hek all tuples in K�. Let usapply this algorithm by applying it in the setting of Example 4.2.8.Example 4.2.10. Let V andM1;M2 be de�ned as in Example 4.2.8. We followthe steps of the yliity test.C1. The residue lasses of O = f1; x; yg form a K-basis of P=AnnP (V ).C2. We have � = 3 = dimQ(V ).C3. We ompute I3 � (z1; z2; z3)tr = (z1; z2; z3)tr as well asM1 � (z1; z2; z3)tr =(z2 + z3; 2z2 + z3; z2 + z3)tr and M2 � (z1; z2; z3)tr = (z2; z2 + z3; z2)tr.Thus we let A = 0�z1 z2 + z3 z2z2 2z2 + z3 z2 + z3z3 z2 + z3 z2 1A and alulate d = det(A) =(z1 � z3)(z22 � z2z3 � z23).C4. Sine K is in�nite and d 6= 0, the algorithm returns "V is yli". Forinstane, sine d(1; 1; 0) = 1, the element w = e1 + e2 generates V as aP -module.



178 A. Kehrein, M. Kreuzer, and L. RobbianoThe following example shows that V an fail to be yli even when thedimensions of V and P=AnnP (V ) agree.Example 4.2.11. Let V = Q3 , and let V = (e1; e2; e3) be its anonial basis. Weequip V with the Q[x; y℄-module struture de�ned by the ommuting matriesM1 = 0�0 0 01 0 00 0 01A and M2 = 0�0 0 00 0 10 0 01ALet us apply the yliity test step-by-step.C1. The algorithm of Theorem 4.2.7 yields O = f1; x; yg.C2. We have � = 3 = dimQ(V ).C3. We alulate A = 0�z1 0 0z2 z1 z3z3 0 01A and d = det(A) = 0.C5. The algorithm returns "V is not yli".We end this setion by onsidering the speial ase n = 1. In this univariatease some of the topis disussed in this setion look very familiar.Example 4.2.12. Suppose we are given a �nitely generated K-vetor spae Vand an endomorphism ' of V . We let P = K[x℄ and observe that V beomesa P -module via the rule (f; v) 7! f(')(v). When is it a yli P -module? Letus interpret the meaning of the steps of our yliity test in the univariatease. To start with, let M be a matrix representing '.C1. The algorithm of Theorem 4.2.7 applied to M yields a moni polynomialf(x) = xd + d�1xd�1 + � � �+ 0, whih is the minimal polynomial of M(and of '), and the tuple O = (1; x; x2; : : : ; xd�1).C2. The minimal polynomial ofM is a divisor of the harateristi polynomialof M, and the degree of the latter is dimK(V ). So the algorithm stops atstep C2 only if the minimal polynomial and the harateristi polynomialdi�er.C3. The matrix A an be interpreted as the matrix whose olumns are thevetors v; '(v); : : : ; 'd�1(v) for a generi v. If det(A) = 0, then the endo-morphisms 1; '; : : : ; 'd�1 are linearly dependent, a ontradition. Henedet(M) neessarily is non-zero and V is a yli P -module.In onlusion, steps C3, C4, C5 are redundant in the univariate ase. Thisorresponds to the well-known fat that V is a yli K[x℄-module if and onlyif the minimal polynomial and the harateristi polynomial of ' oinide.



4 Border Bases 1794.3 Border prebasesGiven a zero-dimensional polynomial ideal I , we want to study the residuelass ring P=I by hoosing a K-basis and examining the multipliation ma-tries with respet to that basis. How an we �nd a basis having \nie" prop-erties? One possibility is to take the residue lasses of the terms in an orderideal, i.e. in a �nite set of terms whih is losed under forming divisors.The hoie of an order ideal O yields additional struture on the monoidof terms Tn. For instane, there are terms forming the border of O, i.e. termst outside O suh that there exist an indeterminate xi and a term t0 in Owith t = xit0. Moreover, every term t has an O-index whih measures thedistane from t to O. The properties of order ideals, borders, and O-indiesare olleted in the �rst subsetion.The seond subsetion deals with O-border prebases. These are sets ofpolynomials eah of whih onsists of one term in the border of O and alinear ombination of terms in O. Using O-border prebases, we onstrut adivision algorithm and de�ne normal remainders.4.3.1 Order idealsLet Tn denote the monoid of terms in n indeterminates. Moreover, for everyd � 0, we let Tnd be the set of terms of degree d and Tn<d = Sd�1i=0 Tni . Thefollowing kind of subset of Tn is entral to this paper.De�nition 4.3.1. A non-empty, �nite set of terms O � Tn is alled an orderideal if it is losed under forming divisors, i.e. if t 2 O and t0 j t imply t0 2 O.Order ideals have many other names in the literature. For instane, statis-tiians sometimes all them omplete sets of estimable terms (see Se-tion 4.5). In Chapter 3, the more general notion of \sets of polynomials on-neted to 1" is used.De�nition 4.3.2. Let O � Tn be an order ideal.1. The border of O is the set�O = Tn1 � O n O = (x1O [ � � � [ xnO) n OThe �rst border losure of O is the set �O = O [ �O.2. For every k � 1, we indutively de�ne the (k + 1)st border of O by�k+1O = �(�kO) and the (k + 1)st border losure of O by the rule�k+1O = �kO [ �k+1O. For onveniene, we let �0O = �0O = O.The kth border losure of an order ideal O is an order ideal for every k � 0.In Chapter 3, the kth border of O is denoted by O[k℄.Example 4.3.3. Let O be the order ideal f1; x; y; x2; xy; y2; x3; x2y; y3; x4; x3ygin T2. Then we visualize O and its �rst two borders as follows.
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xi

yj
� �� ���� ��� ��1Æ ÆÆ Æ Æ Æ Æ� � � � � � �Let us ollet some properties of order ideals, their borders and borderlosures.Proposition 4.3.4 (Basi Properties of Borders).Let O � Tn be an order ideal.1. For every k � 0, we have a disjoint union �kO = Ski=0 �iO.2. For every k � 1, we have �kO = Tnk � O n Tn<k � O.3. We have a disjoint union Tn = S1i=0 �iO.4. A term t 2 Tn is divisible by a term in �O if and only if t 2 Tn n O.Proof. The de�nition of the �rst border losure of O yields �O = O[Tn1 � O.Indutively, it follows that �k+1O = �kO [ Tn1 � �kO[ = �kO [ Tnk+1O. Thisproves the �rst laim. Then the seond laim is a onsequene of the equality�k+1O = �k+1O n �kO. The third laim follows from the observation thatevery term is in �kO for some k � 0.Finally, the fourth laim holds beause the seond laim implies the fatthat t 2 �kO for some k � 1 is equivalent to the existene of a fatorizationt = t0t00 where deg(t0) = k � 1 and t00 2 �O. �The above partition of Tn allows us to de�ne a \distane" between a termand an order ideal.De�nition 4.3.5. Let O � Tn be an order ideal.1. For every t 2 Tn, there exists a unique number k 2 N suh that t 2 �kO.We all k the index of t with respet to O and write indO(t) = k.2. For an arbitrary polynomial f 2 P n f0g, we de�ne the index of f withrespet to O by indO(f) = maxfindO(t) j t 2 Supp (f)g.By this de�nition, the kth border of O onsists preisely of the termsof index k. Notie that every polynomial f 2 P n f0g has a representationf = 1t1 + � � �+ sts where 1; : : : ; s 2 K n f0g and suh that t1; : : : ; ts 2 Tnsatisfy indO(t1) � � � � � indO(ts). However, this representation is in generalnot unique sine several terms in the support of f may have the same indexwith respet to O.Let us point out some of the most useful properties of the index.



4 Border Bases 181Proposition 4.3.6. Let O � Tn be an order ideal.1. For a term t 2 Tn, the number k = indO(t) is the smallest natural numbersuh that t = t0t00 with a term t0 2 Tn of degree k and with t00 2 O.2. Given two terms t; t0 2 Tn, we have indO(t t0) � deg(t) + indO(t0).3. For f; g 2 P n f0g suh that f + g 6= 0, we haveindO(f + g) � maxfindO(f); indO(g)g4. For f; g 2 P n f0g, we haveindO(f g) � minfdeg(f) + indO(g); deg(g) + indO(f)gProof. The �rst laim follows from the proof of Proposition 4.3.4.4. The seondlaim follows from the �rst. The third laim is a onsequene of the inlusionSupp (f+g) � Supp (f)[Supp (g). The last laim follows from the observationthat Supp (fg) � ft0t00 j t0 2 Supp (f); t00 2 Supp (g)g and from the seondlaim. �Although the partial ordering on Tn de�ned by the index appears similarto a term ordering, it has a serious drawbak: this ordering is inompatiblewith term multipliation, i.e. indO(t) � indO(t0) does not, in general, implyindO(t t00) � indO(t0 t00). Our next example is a ase in point.Example 4.3.7. Let O = f1; x; x2g � T(x; y). Then O is an order ideal withborder �O = fy; xy; x2y; x3g. The following sketh illustrates the situation.
............................... ............................................................... xiyj� � �1Æ Æ Æ Æ� � � � �Multiplying the terms on both sides of the inequality indO(y) > indO(x2)by x2, we get indO(x2 � y) < indO(x2 � x2). Similarly, if we multiply the termson both sides of the equality indO(y) = indO(x2y) by x, we get the inequalityindO(x � y) < indO(x � x2y).4.3.2 Border divisionIn this subsetion we introdue an important tool for dealing with zero-dimensional ideals: an O-border prebasis, i.e. a set of polynomials of whiheah is a linear ombination of one term in �O and terms in O. In this waywe imitate the de�nition of a Gr�obner basis where eah polynomial is a lin-ear ombination of the leading term and smaller terms. Then we present aproess for dividing arbitrary polynomials by those of an O-border prebasis.However, the remainder of this division proess is not uniquely determined.This indiates that O-border prebases are a �rst step in the right diretionand that we must take one more step in the next setion.



182 A. Kehrein, M. Kreuzer, and L. RobbianoDe�nition 4.3.8. Let O = ft1; : : : ; t�g be an order ideal, and let �O =fb1; : : : ; b�g be its border. A set of polynomials G = fg1; : : : ; g�g is alled anO-border prebasis if the polynomials have the form gj = bj �P�i=1 �ijtisuh that �ij 2 K for 1 � i � � and 1 � j � �.In partiular, a border prebasis an be interpreted as a tuple of polynomialsmarked by the border terms (b1; : : : ; b�) in the following sense.De�nition 4.3.9. A pair (g; b) is said to be a marked polynomial if g is anon-zero polynomial and b 2 Supp (g) with oeÆient 1. A tuple of polynomials(g1; : : : ; g�) is marked by a tuple of terms (b1; : : : ; b�) if (g1; b1); : : : ; (g� ; b�)are marked polynomials.The de�nition of a border prebasis only �xes the shape of our generators.Note that this notion requires a bit more than that of marked polynomials {the unmarked terms in the polynomial's support have to be in the order ideal.Border prebases are already suÆient to perform polynomial division withremainder. The following algorithm provides a fundamental tool in workingwith border prebases. It is similar to the proedure alled \B-redution" inChapter 3.Proposition 4.3.10 (Border Division Algorithm).Let O = ft1; : : : ; t�g be an order ideal, let �O = fb1; : : : ; b�g be its border, andlet fg1; : : : ; g�g be an O-border prebasis. Given a polynomial f 2 P , onsiderthe following instrutions.D1. Let f1 = � � � = f� = 0, 1 = � � � = � = 0, and h = f .D2. If h = 0, then return (f1; : : : ; f� ; 1; : : : ; �) and stop.D3. If indO(h) = 0, then �nd 1; : : : ; � 2 K suh that 1t1 + � � �+ �t� = h.Return (f1; : : : ; f� ; 1; : : : ; �) and stop.D4. If indO(h) > 0, then let h = a1h1+� � �+ashs suh that a1; : : : ; as 2 Knf0gand h1; : : : ; hs 2 Tn satisfy indO(h1) = indO(h). Determine the smallestindex i 2 f1; : : : ; �g suh that h1 fators as h1 = t0 bi and so that the termt0 2 Tn has degree indO(h)�1. Subtrat a1t0gi from h, add a1t0 to fi, andontinue with step D2.This is an algorithm whih returns a tuple (f1; : : : ; f� ; 1; : : : ; �) 2 P � �K�suh that f = f1g1 + � � �+ f�g� + 1t1 + � � �+ �t�and deg(fi) � indO(f)� 1 for all i 2 f1; : : : ; �g with figi 6= 0. This represen-tation does not depend on the hoie of the term h1 in Step D4.For the reader's onveniene we reprodue the proof from [KK03a℄.Proof. First we show that Step D4 an be exeuted. Let k = indO(h1). ByProposition 4.3.4.2, there is a fatorization h1 = ~t ti for some term ~t of degree kand some ti 2 O, and there is no suh fatorization with a term ~t of smaller



4 Border Bases 183degree. Sine k > 0, we an write ~t = t0 xj for some t0 2 Tn and j 2 f1; : : : ; ng.Then we have deg(t0) = k � 1, and the fat that ~t has the smallest possibledegree implies xj ti 2 �O. Thus we have h1 = t0 (xj ti) = t0 bk for somebk 2 �O.Next we prove termination. We show that Step D4 is performed only�nitely many times. Let us investigate the subtration h� a1t0gi in Step D4.Using the representation gi = bi �P�k=1 �kitk given in De�nition 4.3.8, thissubtration beomesh� a1t0gi = a1h1 + � � �+ ashs � a1t0bi + a1t0 �Pk=1�kitkNow a1h1 = a1t0bi shows that a term of index indO(h) is removed from h andreplaed by terms of the form t0 tl 2 �k�1O whih have stritly smaller index.The algorithm terminates after �nitely many steps beause, for a given term,there are only �nitely many terms of smaller or equal index.Finally, we prove orretness. To this end, we show that the equationf = h + f1g1 + � � �+ f�g� + 1t1 + � � �+ �t�is an invariant of the algorithm. It is satis�ed at the end of Step D1. A poly-nomial fi is only hanged in Step D4. There the subtration h � a1t0gi isompensated by the addition (fi + a1t0)gi. The onstants 1; : : : ; � are onlyhanged in Step D3 in whih h is replaed by the expression 1t1 + � � �+ �t�.When the algorithm stops, we have h = 0. This proves the stated representa-tion of f . The additional laim that this representation does not depend onthe hoie of h1 in Step D4 follows from the observation that h1 is replaedby terms of stritly smaller index. Thus the di�erent exeutions of Step D4orresponding to the redution of several terms of a given O-index in h do notinterfere with one another, and the �nal result { after all those terms havebeen rewritten { is independent of the order in whih they are taken areof. �Notie that in Step D4 the algorithm uses a representation of h whih isnot neessarily unique. Moreover, to make the fatorization of h1 unique, wehose the index i minimally, but this hoie had not been fored upon us.Finally, the result of the division depends on the numbering of the elementsof �O, as our next example shows.Example 4.3.11. Let n = 2, and let O = ft1; t2; t3g with t1 = 1, t2 = x, andt3 = y. Then the border of O is �O = fb1; b2; b3g with b1 = x2, b2 = xy,and b3 = y2. The polynomials g1 = x2 + x + 1, g2 = xy + y, and g3 =y2+x+1 onstitute an O-border prebasis. We want to divide the polynomialf = x3y2 � xy2 + x2 + 2 by this O-border prebasis.For easy referene, the next borders are �2O = fx3; x2y; xy2; y3g, �3O =fx4; x3y; x2y2; xy3; y4g, and �4O = fx5; x4y; x3y2; x2y3; xy4; y5g. We applythe Border Division Algorithm and follow its steps.



184 A. Kehrein, M. Kreuzer, and L. RobbianoD1. Let f1 = f2 = f3 = 0, 1 = 2 = 3 = 0, and h = x3y2�xy2+x2+2. TheO-indies of the terms in h are 4,2,1 and 0 respetively, so h has index 4.D4. We have x3y2 = xy2 � b1 with degxy2 = ind(h)� 1. Thus we put f1 = xy2and h = x3y2� xy2 + x2 +2� xy2(x2 + x+1). The terms in the supportof h = �x2y2 � 2xy2 + x2 + 2 have O-indies 3,2,1 and 0 respetively.D4. We have x2y2 = y2 � b1 with deg y2 = ind(h)� 1. Add �y2 to f1 to obtainf1 = xy2 � y2 and put h = �x2y2 � 2xy2 + x2 + 2 + y2(x2 + x+ 1). Theterms in the support of h = �xy2+x2+y2+2 have O-indies 2,1,1 and 0respetively.D4. We have xy2 = y � b2 with deg y = ind(h)� 1. Put f2 = �y and put h =�xy2+x2+y2+2+y(xy+y). The terms in the support of h = x2+2y2+2have O-indies 1,1 and 0 respetively.D4. We have x2 = 1 � b1 with deg 1 = ind(h) � 1. Add 1 to f1 to obtainf1 = xy2 � y2+1 and put h = x2 +2y2+2� 1(x2 + x+1). The terms inthe support of h = 2y2 � x+ 1 have O-indies 1,0 and 0 respetively.D4. We have y2 = 1 � b3 with deg 1 = ind(h)� 1. Add 2 to f3 to obtain f3 = 2and put h = 2y2 � x + 1 � 2(y2 + x + 1). The terms in the support ofh = �3x� 1 have O-indies 0 and 0. Thus indO(h) = 0.D3. We have h = �1 � t1�3t2+0t3. The algorithm returns the following tuple(xy2 � y2 + 1;�y; 2; 1; �3; 0) and stops.Therefore we have a representationf = (xy2 � y2 + 1)g1 � y g2 + 2 g3 � 1 t1 � 3 t2 + 0 t3Seond we perform the algorithm with respet to the shu�ed tuple(g01; g02; g03) = (g3; g2; g1).D1. Let f1 = f2 = f3 = 0, 1 = 2 = 3 = 0, and h = x3y2�xy2+x2+2. TheO-indies of the terms in in the support of h are 4,2,1 and 0 respetively,so h has index 4.D4. We have x3y2 = x3 � b01 with degx3 = ind(h) � 1. Thus we put f 01 = x3and h = x3y2 � xy2 + x2 + 2� x3(y2 + x+ 1). The terms in the supportof h = �x4 � x3 � xy2 + x2 +2 have O-indies 3,2,2,1 and 0 respetively.D4. We have x4 = x2 � b03 with degx2 = ind(h) � 1. Add �x2 to f 03 to obtainf 03 = x2 and put h = �x4�x3�xy2+x2+2+x2(x2+x+1). The terms inthe support of h = �xy2+2x2+2 have O-indies 2,1, and 0 respetively.D4. We have xy2 = x � b01 with deg x = ind(h) � 1. Add x to f 01 to obtainf 01 = x3+x and put h = �xy2+2x2+2+x(y2+ y+1). The terms in thesupport of h = 2x2 + xy + x+ 2 have O-indies 1,1,0 and 0 respetively.D4. We have x2 = 1 � b03 with deg 1 = ind(h) � 1. Add 2 to f 03 to obtainf 03 = x2 + 2 and put h = 2x2 + xy + x + 2� 2(x2 + x+ 1). The terms inthe support of h = xy � x have O-indies 1 and 0 respetively.D4. We have xy = 1 � b02 with deg 1 = ind(h)� 1. Add 1 to f 02 to obtain f 02 = 1and put h = xy � x � 1(xy + y). The terms in the support of h = x � yhave O-indies 0 and 0. Thus we have indO(h) = 0.



4 Border Bases 185D3. We write h = 0t1 + 1t2 � 1t3. The algorithm returns the following tuple(x3 + x; �1; x3 + x; 0; 1; �1) and stops.Therefore we have a representationf = (x3 + x)g01 � 1 g02 + (x2 + 2) g03 + 1 t1 � 3 t2 � 1 t3= (x2 + 2)g1 � 1 g2 + (x3 + x) g3 + 0 t1 + 1 t2 � 1 t3These alulations show that the order of the polynomials does a�et theoutome of the Border Division Algorithm.If we �x the tuple (g1; : : : ; g�) then the result of the Border DivisionAlgorithm is uniquely determined. The given polynomial f is representedin P=(g1; : : : ; g�) by the residue lass of the linear ombination 1t1+� � �+�t�.We introdue a name for this linear ombination.De�nition 4.3.12. Let O=ft1; : : : ; t�g be an order ideal, let G = fg1; : : : ; g�gbe an O-border prebasis, and let G = (g1; : : : ; g�). The normal O-remainderof a polynomial f with respet to G isNRO;G(f) = 1t1 + � � �+ �t�where f = f1g1+ � � �+ f�g� + 1t1+ � � �+ �t� is the representation omputedby the Border Division Algorithm.Example 4.3.13. Let G = (g1; g2; g3) and G0 = (g01; g02; g03) be the tuples on-sidered in Example 4.3.11. The above omputations lead toNRO;G(f) = �3x� 1 and NRO;G0(f) = x� ySo the normal O-remainder depends on the ordering of the polynomials in G.In the next setion we shall enounter a speial kind of border prebasis forwhih this unwanted dependene disappears.An important onsequene of the Border Division Algorithm is that theresidue lasses of the elements of O generate P=(g1; : : : ; g�) as a K-vetorspae. But, as the above examples show, this system of generators is notneessarily a basis.Corollary 4.3.14. Let O=ft1; : : : ; t�g be an order ideal and G = fg1; : : : ; g�gan O-border prebasis. Then the residue lasses of the elements of O gener-ate P=(g1; : : : ; g�) as a K-vetor spae. More preisely, the residue lass ofevery polynomial f 2 P an be represented as a linear ombination of theresidue lasses f�t1; : : : ; �t�g by omputing the normal remainder NRO;G(f) forG = (g1; : : : ; g�).



186 A. Kehrein, M. Kreuzer, and L. Robbiano4.4 Border basesAfter all these preparations we are ready to introdue the fundamental notionof this artile: border bases. They are speial systems of generators of zero-dimensional ideals whih do not depend on the hoie of a term ordering,but the hoie of an order ideal. We disuss their existene and uniquenessand ompare them to Gr�obner bases of the given ideal. Then we show howone an use border bases to de�ne normal forms, and we haraterize borderbases by the property that the assoiated multipliation matries are pairwiseommuting.4.4.1 Existene and uniqueness of border basesAs above, let P = K[x1; : : : ; xn℄ be a polynomial ring over a �eldK. Moreover,let I be a zero-dimensional ideal in P .De�nition 4.4.1. Let O = ft1; : : : ; t�g be an order ideal and G = fg1; : : : ; g�gan O-border prebasis onsisting of polynomials in I. We say that the set G isan O-border basis of I if the residue lasses of t1; : : : ; t� form a K-vetorspae basis of P=I.Next we see that this de�nition implies that an O-border basis of I atuallygenerates I .Proposition 4.4.2. Let O = ft1; : : : ; t�g be an order ideal, and let G be anO-border basis of I. Then I is generated by G.Proof. By de�nition, we have (g1; : : : ; g�) � I . To prove the onverse inlusion,let f 2 I . Using the Border Division Algorithm 4.3.10, the polynomial f anbe expanded as f = f1g1+ � � �+ f�g� + 1t1+ � � �+ �t�, where f1; : : : ; f� 2 Pand 1; : : : ; � 2 K. This implies the equality of residue lasses 0 = �f =1�t1 + � � �+ ��t� in P=I . By assumption, the residue lasses �t1; : : : ; �t� form aK-vetor spae basis. Hene 1 = � � � = � = 0, and the expansion of f turnsout to be f = f1g1 + � � �+ f�g� . This ompletes the proof. �Remark 4.4.3. Let O = ft1; : : : ; t�g be an order ideal and G an O-borderprebasis whih generates an ideal I . We let hOiK = Kt1 + � � � +Kt� be thevetor subspae of P generated by O. Then Corollary 4.3.14 shows that theresidue lasses of the elements of O generate P=I . Sine the border basis prop-erty requires that these residue lasses are linearly independent, the followingonditions are equivalent.1. The set G is an O-border basis of I .2. We have I \ hOiK = f0g.3. We have P = I � hOiK .



4 Border Bases 187Having de�ned a new mathematial objet, it is natural to look for itsexistene and possibly its uniqueness. In the following theorem, we mentionthe �eld of de�nition of an ideal. For a disussion on this onept, see [KR00℄,Setion 2.4. Furthermore, given an ideal I � P and a term ordering �, wedenote the order ideal Tn n LT�(I) by O�(I).Theorem 4.4.4 (Existene and Uniqueness of Border Bases).Let O = ft1; : : : ; t�g be an order ideal, let I be a zero-dimensional ideal in P ,and assume that the residue lasses of the elements in O form a K-vetorspae basis of P=I.1. There exists a unique O-border basis G of I.2. Let G0 be an O-border prebasis whose elements are in I. Then G0 is theO-border basis of I.3. Let k be the �eld of de�nition of I. Then we have G � k[x1; : : : ; xn℄.Proof. First we prove Claim 1. Let �O = fb1; : : : ; b�g. For every i 2 f1; : : : ; �g,the hypothesis implies that the residue lass of bi in P=I is linearly dependenton the residue lasses of the elements of O. Therefore I ontains a polynomialof the form bi �P�j=1 �ij tj suh that �ij 2 K. Then G = fg1; : : : ; g�g isan O-border prebasis, and hene an O-border basis of I by De�nition 4.4.1.Let G0 = fg01; : : : ; g0�g be another O-border basis of I . If, for ontradition,there exists a term b 2 �O suh that the polynomials in G and G0 markedby b di�er, their di�erene is a non-zero polynomial in I whose support isontained in O. This ontradits the hypothesis and Claim 1 is proved.To prove the seond laim, it suÆes to observe that, by De�nition 4.4.1,the set G0 is an O-border basis of I and to apply the �rst part. Finally, weprove Claim 3. Let k be the �eld of de�nition of I , let P 0 = k[x1; : : : ; xn℄,and let I 0 = I \ P 0. Given a term ordering �, the ideals I and I 0 have thesame redued �-Gr�obner basis (see [KR00℄, Lemma 2.4.16). Hene we haveO�(I) = O�(I 0), and therefore dimk(P 0=I 0) = dimK(P=I). The elements of Oare in P 0 and they are linearly independent modulo I 0. Hene their residuelasses form a k-vetor spae basis of P 0=I 0. Let G0 be the O-border basisof I 0. Then G0 is an O-border prebasis whose elements are ontained in I .Thus the statement follows from Claim 2. �Given an order ideal O onsisting of dimK(P=I) many terms, does theO-border basis of I always exist? The answer is negative, as our next exampleshows.Example 4.4.5. Let P = Q[x; y℄, and let I be the vanishing ideal of the set of�ve points X = f(0; 0); (0;�1); (1; 0); (1; 1); (�1; 1)g in the aÆne spae A 2 (Q),i.e. let I = ff 2 P j f(p) = 0 for all p 2 Xg. It is known that dimK(P=I) = 5.In T2, the following order ideals ontain �ve elements:O1 = f1; x; x2; x3; x4g; O2 = f1; x; x2; x3; yg; O3 = f1; x; x2; y; y2gO4 = f1; x; x2; y; xyg; O5 = f1; x; y; y2; y3g; O6 = f1; y; y2; y3; y4gO7 = f1; x; y; xy; y2g



188 A. Kehrein, M. Kreuzer, and L. RobbianoNot all of these are suitable for border bases of I . For example, the residuelasses of the elements of O1 annot form a K-vetor spae basis of P=I sinex3 � x 2 I . Similarly, the residue lasses of the elements of O6 annot form aK-vetor spae basis of P=I sine y3 � y 2 I .So, let us strive for less and ask another question. Does a given zero-dimensional ideal possess a border basis at all? Using Theorem 4.4.4, we anrephrase the question in the following way. Given a zero-dimensional ideal I ,are there order ideals suh that the residue lasses of their elements form aK-vetor spae basis of P=I? This time the answer is yes, as we an showwith the help of Gr�obner bases.Given an order ideal O � Tn, its omplement Tn nO is the set of terms ofa monomial ideal. Reall that every monomial ideal has a unique minimal setof generators (see [KR00℄, Proposition 1.3.11). The elements of the minimalset of generators of the monomial ideal orresponding to Tn nO are alled theorners of O. A piture illustrates the signi�ane of this name.
............................... ............................................................... xiyj� � �1� � � �� � �Proposition 4.4.6. Let � be a term ordering on Tn. Then there exists aunique O�(I)-border basis G of I, and the redued �-Gr�obner basis of I is thesubset of G onsisting of the polynomials marked by the orners of O�(I).Proof. ByMaaulay's Basis Theorem (see [KR00℄, Theorem 1.5.7), the residuelasses of the elements in O�(I) form a K-vetor spae basis of P=I . ThusTheorem 4.4.4.1 implies the existene and uniqueness of the O�(I)-borderbasis G of I .To prove the seond laim, we let b 2 Tn n O�(I) be a orner of O�(I).The element of the minimal �-Gr�obner basis of I with leading term b has theform b � NF�;I(b), where NF�;I(b) is ontained in the span of O�(I). Sinethe O�(I)-border basis of I is unique, this Gr�obner basis element agrees withthe border basis element marked by b. Thus the seond laim follows and theproof is omplete. �To summarize the disussion, the ideal I does not neessarily have anO-border basis for every order ideal O onsisting of dimK(P=I) terms, butthere always is an O-border basis if O is of the form O = O�(I) for some termordering �. This motivates our next question. Do all border bases belong toorder ideals of the form O�(I)? In other words, is there a bijetion betweenthe redued Gr�obner bases and the border bases of I? The answer is no, asour next example shows.



4 Border Bases 189Example 4.4.7. Let P = Q[x; y℄, and let X � A 2 (Q) be the set of pointsX = fp1; p2; p3; p4; p5)g, where p1 = (0; 0), p2 = (0;�1), p3 = (1; 0),p4 = (1; 1), and p5 = (�1; 1). Furthermore, let I � P be the vanishingideal of X (see Example 4.4.5). The map eval : P=I �! Q5 de�ned byf + I 7! (f(p1); : : : ; f(p5)) is an isomorphism of K-vetor spaes.Consider the order ideal O = f1; x; y; x2; y2g. The matrix of size 5 � 5whose olumns are (eval(1); eval(x); : : : ; eval(y2)) is invertible. Therefore theresidue lasses of the terms in O form a Q-vetor spae basis of P=I , and I hasan O-border basis by Theorem 4.4.4.1.The border of O is �O = fxy; x3; y3; xy2; x2yg. The O-border basis of I isG = fg1; : : : ; g5g with g1 = x3 � x, g2 = x2y � 12y � 12y2, g3 = xy � x� 12y +x2 � 12y2, g4 = xy2 � x � 12y + x2 � 12y2, and g5 = y3 � y. To show that thisborder basis is not of the form O�(I), onsider the polynomial g3 in moredetail. For any term ordering � we have x2 >� x and y2 >� y. Moreover,either x2 >� xy >� y2 or y2 >� xy >� x2. This leaves either x2 or y2 as theleading term of g3. Sine these terms are ontained in O, the order ideal Oannot be the omplement of LT�(I) in T2 for any term ordering �.The upshot of this example is that the set of border bases of a given zero-dimensional ideal is stritly larger than the set of its redued Gr�obner bases.Therefore there is a better hane of �nding a \nie" system of generatorsof I among border bases than among Gr�obner bases. For instane, sometimesborder bases are advertised by saying that they keep symmetry. While this istrue in many ases, the laim has to be taken with a grain of salt. Just havea look at the following example.Example 4.4.8. Let P = Q[x; y℄ and I = (x2 + y2 � 1; xy � 1). The ideal I issymmetri with respet to the indeterminates x and y. Moreover, we havedimK(P=I) = 4. The only symmetri order ideal onsisting of four terms isO = f1; x; y; xyg. But I does not have an O-border basis, sine we havexy � 1 2 I . It may be interesting to observe that the residue lasses of theelements 1; x� y; x+ y; x2 � y2 form a K-vetor spae basis of P=I .Let us investigate the relationship between Gr�obner bases and border basesa little further. A list (or a set) of marked polynomials ((g1; b1); : : : ; (g� ; b�))is said to be marked oherently if there exists a term ordering � suh thatLT�(gi) = bi for i = 1; : : : ; �. Furthermore, reall that an O-border (pre)basisan be viewed as a tuple of polynomials marked by terms in the border of O.Proposition 4.4.9. Let O be an order ideal suh that the residue lasses ofthe elements of O form a K-vetor spae basis of P=I. Let G be the O-borderbasis of I, and let G0 be the subset of G onsisting of the elements marked bythe orners of O. Then the following onditions are equivalent.1. There exists a term ordering � suh that O = O�(I).2. The elements in G0 are marked oherently.



190 A. Kehrein, M. Kreuzer, and L. Robbiano3. The elements in G are marked oherently.Moreover, if these onditions are satis�ed, then G0 is the redued �-Gr�obnerbasis of I.Proof. Let us prove that 1) implies both 2) and the additional laim. The fatthat G0 is the redued �-Gr�obner basis of I follows from Proposition 4.4.6.Hene G0 is marked oherently. Now we show that 2) implies 3). For everypolynomial g 2 GnG0, there exists a polynomial g0 2 G0 suh that the markedterm of g is of the form b = t LT�(g0). Then the support of the polynomialg � t g0 is ontained in O, and therefore g = t g0. Thus proves that also g ismarked oherently with respet to �.Sine 3)) 2) is obvious, only 2)) 1) remains to be shown. Let � be a termordering whih marks G0 oherently. Denote the monomial ideal generated bythe leading terms of the elements in G0 by LT�(G0). Sine LT�(I) � LT�(G0),we get O�(I) = Tn n LT�(I) � Tn n LT�(G0) = O. Also the residue lassesof the elements of O�(I) form a K-vetor spae basis of P=I , and hene theinlusion is indeed an equality. �The proposition applies for instane to the monomial ideal I generatedby the orners of O. Later we shall see that the equivalent onditions of thisproposition apply for a partiular type of zero-dimensional ideals, namely thevanishing ideals of distrated frations (see Example 4.5.5). The followingremark will be useful in the last setion.Remark 4.4.10. Assume that there exists a term ordering � suh that everyorner of O is �-greater than every element in O. Then we have O = O�(I)for all ideals I suh that the residue lasses of the terms in O form a K-vetorspae basis of P=I . We do not know whether the onverse holds, but we believeit does.4.4.2 Normal formsIn Gr�obner basis theory one an de�ne a unique representative of a residuelass in P=I by using the normal form of a polynomial f . The normal formis obtained by omputing the normal remainder of f under the division bya Gr�obner basis. It does not depend on the Gr�obner basis, but only on thegiven term ordering and the ideal I . Hene it an be used to make the ringoperations in P=I e�etively omputable. In this subsetion we imitate thisapproah and generalize the normal form to border basis theory.Let O = ft1; : : : ; t�g be an order ideal, let G = fg1; : : : ; g�g be theO-border basis of a zero-dimensional ideal I , and let G be the tuple (g1; : : : ; g�).In this situation the normal O-remainder of a polynomial does not depend onthe order of the elements in G.Proposition 4.4.11. Let � : f1; : : : ; �g �! f1; : : : ; �g be a permutation, andlet G0 = (g�(1); : : : ; g�(�)) be the orresponding permutation of the tuple G.Then we have NRO;G(f) = NRO;G0(f) for every polynomial f 2 P .



4 Border Bases 191Proof. The Border Division Algorithm applied to G and G0, respetively, yieldsrepresentationsf = f1g1 + � � �+ f�g� +NRO;G(f) = f 01g�(1) + � � �+ f 0�g�(�) +NRO;G0(f)where fi; f 0j 2 P . Therefore we have NRO;G(f)�NRO;G0(f) 2 hOiK \ I . Thehypothesis that I has an O-border basis implies hOiK \ I = f0g. Hene thelaim follows. �This result allows us to introdue the following de�nition.De�nition 4.4.12. Let O=ft1; : : : ; t�g be an order ideal and G = fg1; : : : ; g�gan O-border basis of I. The normal form of a polynomial f 2 P with respetto O is the polynomial NFO;I(f) = NRO;G(f).The normal form NFO;I(f) of f 2 P an be alulated by dividing f bythe O-border basis of I . It is zero if and only if f 2 I . Further basi propertiesof normal forms are olleted in the following proposition.Proposition 4.4.13 (Basi Properties of Normal Forms).Let O be an order ideal, and suppose that I has an O-border basis.1. If there exists a term ordering � suh that O = O�(I), then we haveNFO;I(f) = NF�;I(f) for all f 2 P .2. For f1; f2 2 P , we have NFO;I(f1 � f2) = NFO;I(f1)�NFO;I(f2).3. For f 2 P , we have NFO;I(NFO;I(f)) = NFO;I(f).4. For f1; f2 2 P , we have NFO;I(f1 f2) = NFO;I�NFO;I(f1) NFO;I(f2)�.5. Let M1; : : : ;Mn 2 Matn(K) be the matries of the multipliation endo-morphisms of P=I with respet to the basis given by the residue lasses ofthe terms in O. Suppose that t1 = 1, and let e1 be the �rst standard basisvetor of K� . Then we haveNFO;I(f) = (t1; : : : ; t�) � f(M1; : : : ;Mn) � e1for every f 2 P .Proof. Claim 1) follows beause both NFO;I(f) and NF�;I(f) are equal to theuniquely determined polynomial in f + I whose support is ontained in O.Claims 2), 3), and 4) follow from the same uniqueness. To prove the lastlaim, we observe that e1 is the oordinate tuple of 1 + I in the basis of P=Igiven by the residue lasses of the terms in O. Sine Mi is the matrix of themultipliation by xi, the tuple f(M1; : : : ;Mn) � e1 is the oordinate tupleof f + I in this basis. From this the laim follows immediately. �



192 A. Kehrein, M. Kreuzer, and L. Robbiano4.4.3 Border bases and ommuting matriesThe purpose of this subsetion is to provide the link between border basesand the theory of ommuting endomorphisms disussed in the seond setion.More preisely, we shall haraterize border bases by the property that theirorresponding formal multipliation matries ommute.Let O = ft1; : : : ; t�g be an order ideal with border �O = fb1; : : : ; b�g,and let G = fg1; : : : ; g�g be an O-border prebasis. For j = 1; : : : ; �, we writegj = bj �P�i=1 �ij ti with �1j ; : : : ; ��j 2 K.In Setion 4.2 we saw that a K-vetor spae basis of P=I allows us todesribe the multipliative struture of this algebra via a tuple of ommutingmatries. If G is a border bases, we an desribe these matries as follows.Remark 4.4.14. In the above setting, assume that G is a border basis. Thenf�t1; : : : ; �t�g is a K-vetor spae basis of P=I , and eah multipliation endo-morphism Xk of P=I orresponds to a matrix Xk = (�ij), i.e.,Xk(�t1) = �11�t1 + � � �+ ��1�t�...Xk(�t�) = �1��t1 + � � �+ ����t�In these expansions only two ases our. The produt xk tj either equals someterm in the order ideal tr 2 O or some border term bs 2 �O. In the formerase we haveXk(�tj) = 0 �t1 + � � �+ 0�tr�1 + 1�tr + 0 �tr+1 + � � �+ 0 �t�i.e., the jth olumn of Xk is the rth standard basis vetor er. In the latter asewe have xktj + I = bs+ I = �1st1+ � � �+��st�+ I , where the oeÆients �isare given by gs = bs �Pi �isti. Therefore we haveXk(�tj) = �1s�t1 + � � �+ ��s�t�i.e., the jth olumn of Xk is (�1s; : : : ; ��s)tr. Observe that all matrix ompo-nents �ij are determined by the polynomials g1; : : : ; g� .In view of this remark, at least formally, multipliation matries an bede�ned for any border prebasis.De�nition 4.4.15. Let O=ft1; : : : ; t�g be an order ideal and G = fg1; : : : ; g�gan O-border prebasis. For 1 � k � n, de�ne the kth formal multipliationmatrix Xk olumnwise by(Xk)�j = (er; if xk tj = tr(�1s; : : : ; ��s)tr; if xk tj = bs



4 Border Bases 193To get some insight into the meaning of this de�nition, let us have a lookat example 4.4.7 \from the outside."Example 4.4.16. Let P = Q[x; y℄, and let O = ft1; t2; t3; t4; t5g be the orderideal given by t1 = 1, t2 = x, t3 = y, t4 = x2, and t5 = y2. The borderof O is �O = fb1; b2; b3; b4; b5g where b1 = xy, b2 = x3, b3 = y3, b4 = x2y,and b5 = xy2. The polynomials g1 = xy � x � 12y + x2 � 12y2, g2 = x3 � x,g3 = y3 � y, g4 = x2y� 12y� 12y2, and g5 = xy2 � x� 12y + x2 � 12y2 de�ne aborder prebasis of I = (g1; : : : ; g5). Now we ompute the formal multipliationmatries X and Y .On the one hand, we have x t1 = t2, x t2 = t4, x t3 = b1, x t4 = b2, andx t5 = b5. On the other hand, we have y t1 = t3, y t2 = b1, y t3 = t5, y t4 = b4,and y t5 = b3. Thus we obtainX = 0BBBB�0 0 0 0 01 0 1 1 10 0 1=2 0 1=20 1 �1 0 �10 0 1=2 0 1=21CCCCA and Y = 0BBBB�0 0 0 0 00 1 0 0 01 1=2 0 1=2 10 �1 0 0 00 1=2 1 1=2 01CCCCABy Example 4.4.7, this border prebasis is even a border basis of I . Hene theformal multipliation matries are the atual multipliation matries. As suhthey ommute.The following theorem is the main result of this subsetion. We hara-terize border bases by the property that their formal multipliation matriesommute. A more general theorem is ontained in Chapter 3.Theorem 4.4.17 (Border Bases and Commuting Matries).Let O = ft1; : : : ; t�g be an order ideal. An O-border prebasis fg1; : : : ; g�g isan O-border basis of I = (g1; : : : ; g�) if and only if its formal multipliationmatries are pairwise ommuting. In that ase the formal multipliation ma-tries represent the multipliation endomorphisms of P=I with respet to thebasis f�t1; : : : ; �t�g.Proof. Let X1; : : : ;Xn be the formal multipliation matries orresponding tothe given O-border prebasis G = fg1; : : : ; g�g. If G is an O-border basis, thenRemark 4.4.14 shows that X1; : : : ;Xn represent the multipliation endomor-phisms of P=I . Hene they are pairwise ommuting.It remains to show suÆieny. Without loss of generality, let t1 = 1. Thematries X1; : : : ;Xn de�ne a P -module struture on hOiK viaf � (1t1 + : : : �t�) = (t1; : : : ; t�)f( ~X1; : : : ; ~Xn)(1; : : : ; �)trFirst we show that this P -module is yli with generator t1. To do so, weuse indution on the degree to show ti � t1 = ti for i = 1; : : : ; �. The indutionstarts with t1 = (t1; : : : ; t�)I� � e1. For the indution step, let ti = xj tk. Thenwe have



194 A. Kehrein, M. Kreuzer, and L. Robbianoti � t1 = (t1; : : : ; t�)ti(X1; : : : ;Xn)e1 = (t1; : : : ; t�)Xj tk(X1; : : : ;Xn)e1= (t1; : : : ; t�)Xjek = (t1; : : : ; t�)ei = tiThus we obtain a surjetive P -linear map ~� : P ! hOiK suh that f 7! f � t1and an indued isomorphism of P -modules � : P=J ! hOiK with J = ker ~�.In partiular, the residue lasses t1+J; : : : ; t�+J are K-linearly independent.Next we show I � J . Let bj = xk tl. Then we havegj(X1; : : : ;Xn)e1 = bj(X1; : : : ;Xn)e1 � �Pi=1�ijti(X1; : : : ;Xn)e1= Xk tl(X1; : : : ;Xn)e1 � �Pi=1�ijei = Xk el � �Pi=1�ijei= �Pi=1�ijei � �Pi=1�ijei = 0Therefore we have gj 2 ker ~� for j = 1; : : : ; � and I � J , as desired.Hene there is a natural surjetive ring homomorphism 	 : P=I ! P=J .Sine the set ft1 + I; : : : t� + Ig generates the K-vetor spae P=I , and sinethe set ft1+J; : : : ; t�+Jg is K-linearly independent, both sets must be basesand I = J . This shows that G is an O-border basis of I . �The following example shows that the formal multipliation matries or-responding to an O-border prebasis are not always ommuting.Example 4.4.18. Let P = Q[x; y℄ andO = ft1; t2; t3; t4; t5g with t1 = 1, t2 = x,t3 = y, t4 = x2, and t5 = y2. Then the border of O is �O = fb1; b2; b3; b4; b4gwith b1 = xy, b2 = x3, b3 = y3, b4 = x2y, and b5 = xy2. Consider the setof polynomials G = fg1; g2; g3; g4; g5g with g1 = xy � x2 � y2, g2 = x3 � x2,g3 = y3 � y2, g4 = x2y � x2, and g5 = xy2 � y2. It is an O-border prebasis ofthe ideal I = (g1; : : : ; g5). Its multipliation matriesX = 0BBBB�0 0 0 0 01 0 0 0 00 0 0 0 00 1 1 1 00 0 1 0 11CCCCA and Y = 0BBBB�0 0 0 0 00 0 0 0 01 0 0 0 00 1 0 1 00 1 1 0 11CCCCAdo not ommute:X � Y = 0BBBB�0 0 0 0 00 0 0 0 00 0 0 0 01 1 0 1 01 1 1 0 11CCCCA 6= Y � X = 0BBBB�0 0 0 0 00 0 0 0 00 0 0 0 01 1 1 1 01 0 1 0 11CCCCABy the theorem, the set G is not an O-border basis of I .



4 Border Bases 195The ondition that the formal multipliation matries of a border basishave to ommute an also be interpreted in terms of the syzygies of thatbasis (see [Ste04℄). Based on the results of this setion one an now imitatethe development of Gr�obner basis theory for border bases. For instane, theborder basis analogues of the onditions A { D whih haraterize Gr�obnerbases in [KR00℄, Chapter 2, are examined by the �rst two authors in [KK03a℄.4.5 Appliation to statistisFifty perent of the itizens of this ountryhave a below average understanding of statistis.(Anonymous)In this last setion we see how to solve a problem in omputational ommu-tative algebra whose motivation omes from statistis. Does this sound strangeto you? Well, ome and see. Our problem omes up in the branh of statistisalled design of experiments. If you want to get a more detailed understandingof this theory, we suggest that you start exploring it by reading [Rob98℄. Or,if you prefer the statistiians' point of view, you an onsult [GP00℄.To get to the heart of the problem, let us introdue some fundamentalonepts of design of experiments. A full fatorial design is a �nite set ofpoints in aÆne spae A n (K) �= Kn of the form D = D1�� � ��Dn where Di isa �nite subset of K. Assoiated to it we may onsider the vanishing ideal ID =ff 2 P j f(p) = 0 for all p 2 Dg. It is a omplete intersetion ID = (f1; : : : ; fn)suh that fi 2 K[xi℄ is a produt of linear forms for i = 1; : : : ; n. For instane,in A 2 (Q) we have the full fatorial design
............................... ............................................................... xy� �� ���� �� �� � �whose vanishing ideal in Q[x; y℄ is ID = �x(x�1)(x�2)(x�3); y(y�1)(y�2)�.The partiular shape of the generators of ID implies that they are the redued�-Gr�obner basis of ID with respet to any term ordering �. Hene the orderideal OD = Tn n LT�(ID) is anonially assoiated to D. In the example athand we have for instaneOD = f1; x; y; x2; xy; y2; x3; x2y; xy2; x3y; x2y2; x3y2gIf a partiular problem depends on n parameters and eah parame-ter an assume �nitely many values Di � K, the full fatorial designD = D1 � � � � �Dn orresponds to the set of all possible experiments. Themain task in the design of experiments is to identify an unknown funtion



196 A. Kehrein, M. Kreuzer, and L. Robbianof : D �! K. This funtion is a mathematial model of a quantity whihhas to be omputed or optimized. Sine it is de�ned on a �nite set, it anbe determined by performing all experiments in D and measuring the valueof f eah time. Notie that a funtion f de�ned on a �nite set is neessarilya polynomial funtion.However, in most ases it is impossible to perform all experiments orre-sponding to the full fatorial design. The obstales an be, for instane, lakof time, lak of money, or lak of patiene. Only a subset of those experimentsan be performed. The question is how many and whih? In statistial jargona subset F of a full fatorial design D is alled a fration. Our task is tohoose a fration F � D that allows us to identify the model. In partiular,we need to desribe the order ideals whose residue lasses form a K-basisof P=IF . Statistiians express this property by saying that suh order ideals(or omplete sets of estimable terms, as they all them) are identi�ed by F .Even more important is the so-alled inverse problem. Suppose we aregiven an order ideal O. We would like to determine all frations F � Dsuh that the residue lasses of the elements of O form a K-basis of P=IF .The main result of [CR97℄ was a partial solution of this inverse problem. Morepreisely, all frations F � D were found suh that O = O�(IF ) for some termordering �. However, we have already pointed out that some order ideals Odo not �t into this sheme (see Example 4.4.7). Later, in the paper [CR01℄the full solution was presented, and the main idea was to use border bases.Before delving into the general solution of the inverse problem followingthe tehnique employed in [CR01℄, let us briey explain an example of anatual statistial problem. This example is taken from [GBH78℄ and adaptedto our setting and terminology.Example 4.5.1. A number of similar hemial plants had been suessfullyoperating for several years in di�erent loations. In a newly onstruted plantthe �ltration yle took almost twie as long as in the older plants. Sevenpossible auses of the diÆulty were onsidered by the experts.1. The water for the new plant was somehow di�erent in mineral ontent.2. The raw material was not idential in all respets to that used in the olderplants.3. The temperature of �ltration in the new plant was slightly lower than inthe older plants.4. A new reyle devie was absent in the older plants.5. The rate of addition of austi soda was higher in the new plant.6. A new type of �lter loth was being used in the new plant.7. The holdup time was lower than in the older plants.These auses lead to seven variables x1; : : : ; x7. Eah of them an assumeonly two values, namely old and new whih we denote by 0 and 1, respetively.Our full fatorial design D � A 7 (Q) is therefore the set D = f0; 1g7. Its



4 Border Bases 197vanishing ideal is ID = (x21�x1; x22�x2; : : : ; x27�x7) in the polynomial ringP = Q[x1 ; x2; : : : ; x7℄.The model f : D �! Q is the length of a �ltration yle. In order toidentify it, we would have to perform 128 yles. This is impratiable, sineit would require too muh time and money. On the other hand, suppose for amoment that we ondut all experiments and the output is f = a+ b x1+  x2for some a; b;  2 Q. At this point it beomes lear that we wasted manyresoures. Had we known in advane that the polynomial has only three un-known oeÆients, we ould have identi�ed them by performing only threesuitable experiments! Namely, if we determine three values of the polynomiala+ b x1+  x2, we an �nd a; b;  by solving a system of three linear equationsin these three indeterminates. If the matrix of oeÆients is invertible, this isan easy task.However, a priori one does not know that the answer has that shape indi-ated above. In pratie, one has to make some guesses, perform well-hosenexperiments, and possibly modify the guesses until the proess yields the de-sired answer. In the ase of the hemial plant, it turned out that only x1and x5 were relevant for identifying the model.In this example there is one point whih needs additional explanation. Howan we hoose the fration F suh that the matrix of oeÆients is invertible?In other words, given a full fatorial design D and an order ideal O � OD ,whih frations F � D have the property that the residue lasses of the ele-ments of O are aK-basis of P=IF ? This is preisely the inverse problem statedabove. In order to explain its solution, we introdue the following terminology.De�nition 4.5.2. For i = 1; : : : ; n, let `i � 1 and Di = fai1; ai2; : : : ; ai`ig �K. Then we say that the full fatorial design D = D1 � � � � � Dn � A n (K)has levels (`1; : : : `n).The polynomials fi = (xi�ai1) � � � (xi�ai`i) with i = 1; : : : ; n generate thevanishing ideal ID of D. They are alled the anonial polynomials of D.Sine ff1; : : : ; fng is a universal Gr�obner basis of ID (i.e. a Gr�obner basiswith respet to every term ordering), the order idealOD = fx�11 � � �x�nn j 0 � �i < `i for i = 1; : : : ; ngrepresents a K-basis of P=ID. We all it the omplete set of estimableterms of D.The following auxiliary result will be useful for proving the main theorem.Lemma 4.5.3. Let D be a full fatorial design, let ff1; : : : ; fng be its anon-ial polynomials, let K be the algebrai losure of K, and let I be a properideal of K[x1; : : : ; xn℄ suh that ID � I.1. The ideal I is a radial ideal. It is the vanishing ideal of a fration of D.2. The ideal I is generated by elements of P and I \ P a radial ideal.



198 A. Kehrein, M. Kreuzer, and L. Robbiano3. The polynomials of every border basis of I are elements of P .Proof. First we prove Claim 1. Let A n (K) be the aÆne spae of dimension nover K, and let F � A n (K) be the set of zeros of I . Sine ID � I , we haveF � D. By loalizing the ring A = K[x1; : : : ; xn℄=ID at the maximal ideals morresponding to the points of d, we see that either IAm = (1) or IAm = mAm.Therefore I is a radial ideal, and hene it is the de�ning ideal of F .Sine I is the de�ning ideal of a �nite set of points with oordinates in K,it is the intersetion of ideals generated by linear forms having oeÆientsin K. Consequently, the ideal I is de�ned over K whih proves Claim 2. Thethird laim follows from Theorem 4.4.4. �Now we are ready to state the main result of this setion. Our goal is tosolve the inverse problem. The idea is to proeed as follows. We are given afull fatorial design D and an order ideal O. By Theorem 4.4.4, ideals I suhthat O represents a K-basis of P=I are in 1-1 orrespondene with borderbases whose elements are marked by the terms in �O. Exept for the bor-der basis elements whih are anonial polynomials of D, we an write themdown using indeterminate oeÆients and require that the orresponding for-mal multipliation matries are pairwise ommuting. For I to be the vanishingideal of a fration ontained in D, we have to make sure that I ontains ID . Tothis end, we require that the normal O-remainders of the anonial polynomi-als of D are zero. By ombining these requirements, we arrive at the followingresult.Theorem 4.5.4 (Computing All Frations).Let D be a full fatorial design with levels (`1; : : : ; `n), and let O = ft1; : : : ; t�gbe a omplete set of estimable terms ontained in OD with t1 = 1. Considerthe following de�nitions.1. Let C = ff1; : : : ; fng be the set of anonial polynomials of D, where fi ismarked by x`ii for i = 1; : : : ; n.2. Deompose �O into �O1 = fx`11 ; : : : ; x`nn g \ �O and �O2 = �O n �O1.3. Let C1 be the subset of C marked by �O1, and let C2 = C n C1.4. Let � = #(�O2). For i = 1; : : : ; � and j = 1; : : : ; �, introdue new inde-terminates zij .5. For every bk 2 �O2, let gk = bk �P�j=1 zkjtj 2 K(zij)[x1; : : : ; xn℄.6. Let G = fg1; : : : ; g�g and H = G [ C1. Let M1; : : : ;Mn be the formalmultipliation matries assoiated to the O-border prebasis H.7. Let I(O) be the ideal in K[zij ℄ generated by the entries of the matriesMiMj �MjMi for 1 � i < j � n, and by the entries of the olumnmatries f(M1; : : : ;Mn) � e1 for all f 2 C2.Then I(O) is a zero-dimensional ideal in K[zij ℄ whose zeros are in 1-1orrespondene with the solutions of the inverse problem, i.e. with frationsF � D suh that O represents a K-basis of P=IF .



4 Border Bases 199Proof. Let p = (�11; : : : ; �� �) 2 K�� be a zero of I(O). When we substitutethe indeterminates zij by the oordinates of p in the matries M1; : : : ;Mn,we obtain pairwise ommuting matriesM1; : : : ;Mn whih feature the addi-tional property that f(M1; : : : ;Mn) � e1 = 0 for every f 2 C2.Now we substitute the oordinates of p in the polynomials of G and getpolynomials �gk = bk�P�j=1 �kj tj 2 P . Then we form the setsG = f�g1; : : : ; �g�gand H = G [ C1, and we let I be the ideal generated by H . Sine the set His an O-border prebasis of the ideal generated by it, the set H is an O-borderprebasis of I . Moreover, the fat that M1; : : : ;Mn are the formal multipli-ation matries of H implies that M1; : : : ;Mn are the formal multipliationmatries of H. Hene we an apply Theorem 4.4.17 and onlude that H isthe O-border basis of I .By de�nition, we have C1 � I . Using Proposition 4.4.13.5, we see thatf(M1; : : : ;Mn) � e1 = 0 implies NFO;I(f) = 0, and therefore f 2 I forall f 2 C2. Altogether, we have C = C1 [ C2 � I , and thus ID � I . ByLemma 4.5.3.1, it follows that I is the vanishing ideal of a fration of D.Conversely, let F be a fration of D suh that O represents a K-basisof P=IF . Consider the O-border basis B of IF and write B = B1 [ B2 suhthat B1 ontains the polynomials marked by �O1 and B2 ontains the poly-nomials marked by �O2. Sine �O1 � �OD, the polynomials in B1 have theshape required for OD-border basis elements of ID, i.e. they agree with thepolynomials in C1. The polynomials in B2 are of the form �gk = bk�P�j=1 �kj tjwhere bk 2 �O2 and �kj 2 K. Let p = (�ij) 2 K�� . We laim that p is a zeroof I(O).The point p is a zero of the entries of the matries MiMj �MjMj for1 � i < j � n, sine the matries M1; : : : ;Mn obtained by substituting pinM1; : : : ;Mn are the formal multipliation matries of B and thus ommuteby Theorem 4.4.17. The point p is a zero of the entries of f(M1; : : : ;Mn)�e1 forf 2 C2, sine f(M1; : : : ;Mn) � e1 equals NFO;IF (f) by Proposition 4.4.13.5,and this normal form is zero beause f 2 C2 � ID � IF . Altogether, we haveshown that p is a zero of I(O), as laimed. �Using distrated frations (see [RR98℄), one an show that there alwaysexists at least one solution of the inverse problem. Let us look at an exampleto illustrate the method.Example 4.5.5. Let D be the full fatorial design D = f0; 1; 2; 3g � f0; 1; 2gontained in A 2 (Q), and let O = f1; x; y; x2; xy; y2; x3; x2yg � OD. Theorder ideal O an be visualized as follows. ............................... ............................................................... xy � �� ���� ��



200 A. Kehrein, M. Kreuzer, and L. RobbianoWe want to �nd a fration F � D suh that O represents a K-basisof P=IF . One solution is to use the distrated fration whose points are ex-atly the points marked by bullets in the above sketh, i.e. the following setF = f(0; 0); (0; 1); (0; 2); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0)g. An easy omputa-tion shows that the vanishing ideal of F isIF = �x(x � 1)(x� 2)(x� 3); x(x � 1)(x� 2)y; xy(y � 1; y(y � 1)(y � 2)�Moreover, these three generators are a universal Gr�obner basis of IF andO�(IF ) = O for every term ordering �.We end this setion with two examples intended to explain how Theo-rem 4.5.4 solves the inverse problem.Example 4.5.6. Let D be the full fatorial design D = f�1; 0; 1g � f�1; 1gwith levels (3; 2) ontained in A 2 (Q). The omplete set of estimable termsof D is OD = f1; x; y; x2; xy; x2yg. We want to solve the inverse problem forthe order ideal O = f1; x; yg and follow the steps of Theorem 4.5.4.1. The set of anonial polynomials of D is C = ff1; f2g, where f1 = x3 � xand f2 = y2 � 1.2. We deompose �O = fx2; xy; y2g into �O1 = fy2g and �O2 = fx2; xyg.3. Let C1 = ff2g and C2 = ff1g.4. Let � = 2. Choose six new indeterminates z11; z12; z13; z21; z22; z23.5. De�ne g1 = x2 � (z11 + z12x+ z13y) and g2 = xy � (z21 + z22x+ z23y).6. Let G = fg1; g2g and H = fg1; g2; f2g. The formal multipliation matriesassoiated to H areM1 = 0�0 z11 z211 z12 z220 z13 z231A and M2 = 0�0 z21 10 z22 01 z23 01A7. Let I(O) � Q[z11 ; : : : ; z23℄ be the ideal generated by the entries of thematries M1M2 �M2M1 and f1(M1;M2) � e1 = (M31 �M1) � e1. Weobtain I(O) = (z12z21 � z11z22 � z21z23 + z13; z21z22 + z23; z22z23 + z21;z222 � 1; z13z22 � z12z23 + z223 � z11; z22z23 + z21; z11z12 + z13z21;z212 + z13z22 + z11 � 1; z12z13 + z13z23).Using a omputer algebra system, for instane CoCoA, we an hekthat I(O) is a zero-dimensional, radial ideal of multipliity 18. This meansthat among the 20 = �63� triples of points of D, there are 18 triples whihsolve the inverse problem. The two missing frations are f(0; 0); (0; 1); (0; 2)gand f(1; 0); (1; 1); (1; 2)g.When we apply the theorem to larger full fatorial designs, the alulationsinvolved in determining the zeros of I(O) quikly beome voluminous.



4 Border Bases 201Example 4.5.7. Let D be the full fatorial design D = f�1; 0; 1g� f�1; 0; 1gwith levels (3; 3) ontained in A 2 (Q). The omplete set of estimable termsof D is OD = f1; x; y; x2; xy; y2; x2y; xy2; x2y2g. We want to solve the in-verse problem for the order ideal O = f1; x; y; x2; y2g and follow the stepsof Theorem 4.5.4.1. The set of anonial polynomials of D is C = ff1; f2g, where f1 = x31�x1and f2 = x32 � x2.2. We deompose �O = fx3; x2y; xy; xy2; y3g into �O1 = fx3; y3g and�O2 = fx2y; xy; xy2g.3. Let C1 = ff1; f2g and C2 = ;.4. Let � = 3. Choose 15 new indeterminates z11; z12; : : : ; z35.5. De�ne g1 = x2y� (z11+ z12x+ z13y+ z14x2+ z15y2) and g2 = xy� (z21+z22x+z23y+z24x2+z25y2) and g3 = xy2�(z31+z32x+z33y+z34x2+z35y2).6. Let G = fg1; g2; g3g and H = fg1; g2; g3; f1; f2g. The formal multipliationmatries assoiated to H areM1 = 0BBBB�0 0 z21 0 z311 0 z22 1 z320 0 z23 0 z330 1 z24 0 z340 0 z25 0 z351CCCCA M2 = 0BBBB�0 z21 0 z11 00 z22 0 z12 01 z23 0 z13 10 z24 0 z14 00 z25 1 z15 01CCCCA7. Let I(O) be the ideal in Q[z11 ; : : : ; z35℄ generated by the entries of thematrixM1M2�M2M1. Thus I(O) is the ideal generated by the following20 polynomials:z21z23 + z25z31 � z11 z21z22 + z11z24 � z31z13z21 + z15z31 � z21 z21z32 + z11z34 � z21z22z23 + z25z32 � z12 + z21 + z24 z222 + z12z24 � z32z13z22 + z15z32 + z11 + z14 � z22 z22z32 + z12z34 � z22z223 + z25z33 � z13 z22z23 + z13z24 + z21 + z25 � z33z13z23 + z15z33 � z23 z23z32 + z13z34 � z23 + z31 + z35z23z24 + z25z34 � z14 + z22 z14z24 + z22z24 � z34z13z24 + z15z34 + z12 � z24 z24z32 + z14z34 � z24z23z25 + z25z35 � z15 z15z24 + z22z25 + z23 � z35z13z25 + z15z35 � z25 z25z32 + z15z34 � z25 + z33Again we an use a omputer algebra system and hek that I(O) is a zero-dimensional, radial ideal of multipliity 81. This means that among the126 = �95� �ve-tuples of points in D there are 81 �ve-tuple whih solve theinverse problem.One of the zeros of I(O) is the point p 2 Q15 whose oordinates arez11 = 0 z12 = 0 z13 = � 12 z14 = 0 z15 = � 12z21 = 0 z22 = �1 z23 = � 12 z24 = 1 z25 = � 12z31 = 0 z32 = �1 z33 = � 12 z34 = 1 z35 = � 12



202 A. Kehrein, M. Kreuzer, and L. RobbianoThe orresponding O-border basis is fx3�x; x2y� 12y� 12y2; xy� x� 12y+x2� 12y2; xy2�x� 12y+x2� 12y2; y3� yg. The fration de�ned by this basisis F0 = f(0; 0); (0;�1); (1; 0); (1; 1); (�1; 1)gThis is our old friend of Example 4.4.7!In view of our disussion in Setion 4.1, it is natural to ask how manyof the 81 frations F found above have the property that O is not of theform O�(IF ) for any term ordering �. We have seen in Example 4.4.7 that atleast the fration F0 is of that type. By ombining Theorem 4.5.4 and sometehniques disussed in [CR97℄, one an show that 36 of those 81 frationsare of that type. This is a surprisingly high number whih shows that borderbases provide sometimes a muh more exible environment for working withzero-dimensional ideals than Gr�obner bases do.There will never be a last tango(Brad Hooper)


