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Abstract. This paper is devoted to computing modules of two-sided syzy-

gies. Two-sided syzygies are elements
Ps

i=1

Pki
j=1 gijeihij in a free two-sided

module such that
Ps

i=1

Pki
j=1 gijfihij = 0. Here (f1, . . . , fs) is a given tu-

ple of elements of a non-commutative ring R or a free two-sided R-module.
Of particular interest are two-sided syzygies of the form ae1 − e2a such that
aw = w′a for a given pair of words (w, w′) representing elements in a group
ring R = K[G] because these syzygies solve the conjugator search problem.

Our approach is to translate everything to syzygies of elements of a free
two-sided module over the non-commutative polynomial ring K[X∗] and to
adapt the component elimination technique of [3] to this non-commutative
setting. The computation of syzygies over residue class rings of K[X∗] is then
achieved by projecting the corresponding syzygies of vectors of representatives
of the given elements.

1. Introduction

For non-commutative rings, there exist two essentially different ways to con-
struct Gröbner basis theories: Ed Green and his co-workers developed theories for
basic algebras, i.e. algebras having vector space bases which form a multiplicatively
closed set that can be well-ordered (see [4], [5], [7], [8]). Typical examples are path
algebras, PBW-algebras, etc. This theory does usually not apply to group rings,
since their natural vector space basis (the group elements) cannot be well-ordered.

A different approach was taken by Klaus Madlener and his co-workers (see [13],
[14], [15], [9]): if the algebra is decribed by generators and relations, i.e. as a
residue class algebra of the non-commutative polynomial ring, one can use a system
of generators of the ideal of relations which defines a convergent rewrite rule to
compute effectively in the residue class algebra and to define a theory of (prefix-)
Gröbner bases. This theory applies to many monoid and group rings and will be
used in the present paper.

In the first theory, algorithms for the computation of modules of one-sided
syzygies have been developed: Given elements f1, . . . , fs of the non-commutative
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algebra R, the left-R-module of all tuples (g1, . . . , gs) ∈ Rs such that g1f1 + · · · +
gsfs = 0 has been computed (see [5] and [12]). However, for two-sided syzygies
there have been only scattered attempts to achieve this goal. Here we ask for a
system of generators of all tuples ((g11, h11), . . . , (g1k1 , h1k1), . . . , (gsks

, hsks
)) such

that
∑s

i=1

∑ki

j=1 gijfihij = 0.
In [16], II.3, Teo Mora tried to generalize the commutative method of lifting the

syzygies of the leading terms to the case of the non-commutative polynomial ring.
However, this technique faces the problem that the syzygy module of the leading
terms is almost never finitely generated and contains many “trivial” elements. For
PBW-algebras, Manuel and Socorro Garcia Roman computed two-sided syzygies
by shifting the problem to the enveloping algebra and using the known algorithms
for one-sided syzygies (see [6]). In this paper, we solve the problem of computing
two-sided syzygies in the case of the Gröbner basis theory of Madlener et al. in a
direct and straightforward fashion.

The first step is to construct a Gröbner basis theory for submodules of two-sided
free modules over the non-commutative polynomial ring K[X∗] over a field K. For
two-sided ideals in this ring, the two aforementioned Gröbner basis theories agree
and yield the same results. Since two-sided syzygies are elements of the free two-
sided module Fr = (K[X∗]⊗K K[X∗])r over this ring, we generalize the theory in
the natural way and reconnect it to the case of two-sided ideals via the canonical
epimorphism π : F1 −→ K[X∗].

For the actual computation of the two-sided syzygy module we adapt the idea of
Massimo Caboara and Carlo Traverso (see [3] and [10], Tut. 34) from the commu-
tative to the non-commutative setting. They proposed to use “module component
elimination” for syzygy calculations and showed that this approach is theoretically
a most efficient one. Hence we introduce the non-commutative theory of component
elimination is Section 3 and use it to compute intersections and two-sided syzygy
modules over the non-commutative polynomial ring.

Then we bring the full force of the theory of Madlener et al. to bear and com-
pute two-sided syzygy modules over non-commutative rings of the form K[X∗]/I.
The method to do this is to compute the corresponding syzygy module over K[X∗]
and then to project the computed syzygies.

Finally, in the last section, we show that the algorithm we developed can be
used to solve the conjugator search problem in certain finitely presented monoids
and groups, a task which has been suggested as a basis for non-commutative cryp-
tosystems (see [1]). Further examples are contained in the first author’s diploma
thesis [2]. Unless specified otherwise, we shall adhere to the definitions and notation
used in [10] and [11].

2. Gröbner Bases for 2-Sided K[X∗]-Modules

In the following we let X = {x1, . . . , xn} be a finite alphabet and X∗ the
monoid of words (or terms) xi1 · · ·xi`

under concatenation. The empty word will
be denoted by λ. Furthermore, let K be a field, and let

K[X∗] = {c1w1 + · · ·+ csws | ci ∈ K \ {0}, wi ∈ X∗, s ∈ N}
be the non-commutative polynomial ring (also called the free associative algebra)
over the set of indeterminates X. To perform explicit computations in K[X∗], we
need to order the terms.
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Definition 2.1. A term ordering on X∗ is a complete ordering σ such that

(1) w1 ≥σ w2 implies w3w1w4 ≥σ w3w2w4 for w1, . . . , w4 ∈ X∗, and
(2) σ is a well-ordering.

For instance, the length-lexicographic ordering llex is a term ordering. It is
defined by first considering the length of the two words and breaking ties by compar-
ing them lexicographically with respect to x1 >llex · · · >llex xn. Another example
is the total lexicographic ordering tlex which first compares the associated com-
mutative terms lexicographically and then breaks ties using the non-commutative
lexicographic ordering. Notice that the non-commutative lexicographic ordering by
itself is not a term ordering, since it is not a well-ordering.

Given a term ordering σ on X∗, we can define the leading term LTσ(f) of a
non-commutative polynomial f ∈ K[X∗] \ {0} as the largest term in its support.
Then we introduce the leading term ideal of a two-sided ideal I ⊆ K[X∗] by letting

LTσ(I) = 〈LTσ(f) | f ∈ I \ {0}〉
where 〈S〉 denotes the two-sided ideal generated by S. Finally, we recall that a
(two-sided) σ-Gröbner basis of I is a set of non-commutative polynomials G such
that the set of their leading terms LTσ(G) generates LTσ(I).

The Gröbner basis theory for two-sided ideals in K[X∗] is well-developed (see
for instance [17] and [18]). Our first task in this section is to generalize it to
submodules of free two-sided modules. What kind of modules are we talking about?
Given a (non-commutative) K-algebra R, its enveloping algebra Renv = R ⊗K R
is a two-sided R-module in the natural way. For r ≥ 1, we form the two-sided
R-module Fr =

⊕r
i=1 Renv. The following well-known result explains why we call

it the free two-sided R-module of rank r.

Proposition 2.2. For a two-sided R-module M and elements v1, . . . , vr ∈ M ,
there exists a unique homomorphism of two-sided R-modules ϕ : Fr −→ M such
that ϕ(ei) = vi for i = 1, . . . , r. Here ei = (0, . . . , 0, 1 ⊗ 1, 0, . . . , 0) is the ith

standard basis vector in Fr.

Now we introduce the basic notions of Gröbner basis theory in this setting.

Definition 2.3. A term in Fr is an element of the form weiw
′ where w, w′ ∈ X∗

are words and i ∈ {1, . . . , r}. The set of all terms in Fr will be denoted by T(Fr).
A module term ordering on T(Fr) is a total ordering τ such that t1 ≤τ t2

implies w1t1w2 ≤τ w1t2w2 for all t1, t2 ∈ T(Fr) and w1, w2 ∈ X∗, and such that τ
is a well-ordering.

Example 2.4. Let To be a term ordering on X∗.

(1) For terms w1eiw
′
i, w2ejw

′
2 ∈ T(Fr) such that w1, w

′
1, w2, w

′
2 ∈ X∗ and

i, j ∈ {1, . . . , r}, we let

w1eiw
′
i ≥ToPos w2ejw

′
2 ⇐⇒ w1w

′
1 >To w2w

′
2 or

(w1w
′
1 = w2w

′
2 and w1 >To w2) or

(w1 = w2 and i ≤ j).

This defines a module term ordering ToPos on T(Fr).
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(2) For terms w1eiw
′
i, w2ejw

′
2 ∈ T(Fr) such that w1, w

′
1, w2, w

′
2 ∈ X∗ and

i, j ∈ {1, . . . , r}, we let

w1eiw
′
i ≥PosTo w2ejw

′
2 ⇐⇒ i < j or

(i = j and w1w
′
1 >To w2w

′
2) or

(i = j and w1w
′
1 = w2w

′
2 and w1 ≥To w2).

Again this defines a module term ordering PosTo on T(Fr).

Definition 2.5. Let τ be a module term ordering on T(Fr).
(1) Given a vector v ∈ Fr \ {0}, there exists a unique representation v =

c1t1 + · · ·+ csts with c1, . . . , cs ∈ K \ {0} and t1, . . . , ts ∈ T(Fr) satisfying
t1 >τ · · · >τ ts. The term LTτ (v) = t1 is called the leading term of v with
respect to τ . The element LCτ (v) = c1 is called its leading coefficient. We
shall also use the notation LMτ (v) = c1t1.

(2) For a two-sided submodule M ⊆ Fr, the two-sided submodule LTτ (M) =
〈LTτ (v) | v ∈ M \ {0}〉 of Fr is called the leading term module of M .

(3) A subset G of a two-sided submodule M of Fr is called a τ -Gröbner basis
of M if the leading term module LTτ (M) is generated by the leading terms
in the set LTτ{G} = {LTτ (f) | f ∈ G \ {0}}.

Based on these definitions, we can now generalize some standard results of
Gröbner basis theory as follows.

Proposition 2.6 (Macaulay’s Basis Theorem).
Let M be a two-sided submodule of Fr. Then the residue classes of the elements

in T(Fr) \ LTτ{M} form a K-vector space basis of F r/M .

Proof. For v ∈ Fr let v ∈ Fr/M denote the corresponding residue class.
First suppose that the residue classes of T(Fr) \ LTτ{M} do not generate Fr/M .
Then let v ∈ F such that v 6∈ 〈t | t ∈ T(Fr) \ LTτ{M}〉K =: B. Since τ is a
well ordering, we may assume that v has a minimal leading term with respect to
τ among all these elements. If LTτ (v) ∈ T(Fr) \ LTτ{M} then the residue class
of v − LMτ (v) is also not contained in B and LTτ (v − LMτ (v)) <τ LTτ (v), a
contradiction. If LTτ (v) ∈ LTτ{M} then there exists an element m ∈ M such that
LTτ (m) = LTτ (v). Again the element v − LCτ (v)

LCτ (m)m has residue class not in B and
a smaller leading term than v, in contradiction to the minimality of LTτ (v).

To prove the linear independence, suppose that there are elements k ≥ 1,
ci ∈ K \ {0} and ti ∈ T(Fr) \ LTτ{M} such that

∑k
i=1 citi ∈ M . Then we have

LTτ (
∑k

i=1 citi) ∈ LTτ{M} ∩ (T(Fr) \ LTτ{M}), a contradiction. ¤

Proposition 2.7 (The Division Algorithm).
Let s ≥ 1, and let m, f1, . . . , fs ∈ Fr \ {0}. Consider the following sequence of

instructions.
(D1) For i = 1, . . . , s let ki = 1, gi1 = g′i1 = 0, p = 0 and v = m.
(D2) Find the smallest i ∈ {1, . . . , s} such that LTτ (v) = w LTτ (fi)w′ for some

w,w′ ∈ X∗. If such an i exists, increase s by 1, set giki = LCτ (v)
LCτ (fi)

w,

g′iki
= w′ and replace v by v − LCτ (v)

LCτ (fi)
wfiw

′. If now v 6= 0, continue with
step (D2). Otherwise, continue with step (D4).
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(D3) Replace p by p + LMτ (v) and v by v − LMτ (v). If now v 6= 0, continue
with step (D2).

(D4) Return the tuple ((g11, g
′
11), . . . , (g1k1 , g

′
1k1

), . . . , (gs1, g
′
s1), . . . , (gsks

, g′sks
))

and the vector p ∈ Fr.
This is an algorithm which returns elements ((g11, g

′
11), . . . , (gsks

, g′sks
)) and p such

that the following conditions are satisfied.
(1) We have m =

∑s
i=1

∑ki

j=1 gijfig
′
ij + p.

(2) No element of Supp(p) is contained in 〈LTτ (f1), . . . , LTτ (fs)〉.
(3) If gij 6= 0 6= g′ij for some i ∈ {1, . . . , s} and j ∈ {1, . . . , ki} then we have

LTτ (gijfig
′
ij) ≤τ LTτ (m).

(4) For all i ∈ {1, . . . , s} and j ∈ {1, . . . , ki} we have

gij LTτ (fi)g′ij 6∈ 〈LTτ (f1), . . . , LTτ (fi−1)〉.
(5) The elements ((g11, g

′
11), . . . , (gsks , g

′
sks

)) and p are uniquely determined
by the preceding conditions (1)-(4).

Proof. In step (D2) and (D3) the leading term of v becomes strictly smaller
with respect to τ . Since τ is a well ordering, this can happen only finitely many
times and the algorithm stops after finitely many steps.

To prove (1), we consider the equation m =
∑s

i=1

∑ki

j=1 gijfig
′
ij + p + v. It

holds at each point in the algorithm, since in step (D2) we have gikifig
′
iki

+ v =
LCτ (v)
LCτ (fi)

wfiw
′+ v− LCτ (v)

LCτ (fi)
wfiw

′, and in step (D3) we have p+ v = (p+LMτ (v))+

(v − LMτ (v)). Therefore we have m =
∑s

i=1

∑ki

j=1 gijfig
′
ij + p when the algorithm

stops. Moreover, in step (D3) a monomial is added to p only if it is of the form
cw LTτ (fi)w′ for some c ∈ K \ {0}, w, w′ ∈ X∗ and i ∈ {1, . . . , s}, which yields (2).

Claim (3) follows from LT τ(gijfig
′
ij) = LTτ (v) ≤τ LTτ (m).

Now we prove (4). Let i ∈ {1, . . . , s} and j ∈ {1, . . . , ki}. Since in the
corresponding step (D2) the index i is chosen minimally, we obtain LTτ (v) 6∈
〈LTτ (f1), . . . , LTτ (fi−1)〉, where LTτ (v) = 1

LCτ (gij) LCτ (g′ij)
gij LTτ (fi)g′ij .

Finally, suppose there exist other elements ((h11, h
′
11), . . . , (h1l1 , h

′
1l1

), . . . ,
(hs1, h

′
s1), . . . , (hsls , h

′
sls

)) and p′ which satisfy conditions (1)-(4). Then we have

0 =
s∑

i=1

(
ki∑

j=1

gijfig
′
ij −

li∑
j=1

hijfih
′
ij) + (p− p′).

Now condition (2) implies that LTτ (p − p′) 6∈ 〈LTτ (f1), . . . , LTτ (fs)〉 and condi-
tion (4) implies that for each i ∈ {1, . . . , s} the leading term of the corresponding
summand with respect to τ is pairwise different from those of smaller index. Since
it is LTτ (gijfig

′
ij) >τ LTτ (gikfig

′
ik) for k ∈ {j + 1, ki}, we obtain ki = li and

p− p′ = g11fig
′
11 − h11fih

′
11 = · · · = gsksfig

′
sks

− hsksfih
′
sks

= 0. ¤

The vector p in the output of the above algorithm is called the normal remainder
of m with respect to G = (g1, . . . , gs). We will denote it by NRτ,G(m).

Definition 2.8. Let g,m ∈ Fr and G ⊆ Fr.
(1) If there exists a term w1eiw

′
1 ∈ Supp(m) and elements w2, w

′
2 ∈ X∗ such

that w2 LTτ (g)w′2 = w1eiw
′
1, we say that g reduces m in one step to

m′ = m− c
LCτ (g)w2gw′2 using the rewrite rule defined by g, and we denote

it by m
g−→m′. Here c ∈ K is the coefficient of w1eiw

′
1 in m.
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(2) The reflexive and transitive closure of
⋃

g∈G

g−→ is called the rewrite re-

lation defined by G and is denoted by G−→. By G←→ we will denote the
reflexive, symmetric and transitive closure of

⋃
g∈G

g−→.

(3) An element m ∈ Fr is called irreducible with respect to G−→ if there is no
g ∈ G and no m′ ∈ Fr \ {m} such that m

g−→m′.
(4) A rewrite relation is called Noetherian if there is no infinite rewriting se-

quence. It is called confluent if for all m,m1, m2 ∈ Fr such that m
G−→m1

and m
G−→m2 there exists an element m3 ∈ Fr such that m1

G−→m3 and
m2

G−→m3. It is called locally confluent if for all g1, g2 ∈ G and all
m,m1,m2 ∈ Fr such that m

g1−→m1 and m
g2−→m2 there exists an ele-

ment m3 ∈ Fr such that m1
G−→m3 and m2

G−→m3. A rewrite relation
which is Noetherian and confluent is called convergent.

(5) Let I be an index set, and let G = {gi | i ∈ I} ⊆ Fr \ {0}. A pair (i, j)
such that i, j ∈ I and i < j is called a critical pair of G if there are terms
wi, w

′
i, wj , w

′
j ∈ X∗ such that wi LTτ (gi)w′i = wj LTτ (gj)w′j . The set of

all critical pairs of G will be denoted by B. For each pair (i, j) ∈ B, we
call

Sij =
1

LCτ (gi)
wigiw

′
i −

1
LCτ (gj)

wjgjw
′
j

the S-vector of gi and gj .

Proposition 2.9. Let G ⊆ Fr\{0}, let M be the two-sided submodule generated
by G, and let m ∈ Fr. Then the following conditions are equivalent.

(1) The set G is a τ -Gröbner basis of M .
(2) The rewrite relation G−→ is convergent.
(3) There exists a unique element NFτ,M (m) ∈ Fr which is irreducible with

respect to τ such that m
G−→NFτ,M (m). This element is called the normal

form of m with respect to τ .
(4) We have m

G−→ 0 if and only if m ∈ M .

Proof. First we prove (1) ⇒ (2). Since τ is a well ordering, the rewrite
relation G−→ is Noetherian. For the proof of confluence, let m,m1,m2 ∈ Fr be such
that m

G−→m1 and m
G−→m2. Then the element m1 −m2 ∈ M is irreducible with

respect to G−→, and we have m1−m2 = 0, since G is a τ -Gröbner basis of M . Now
the claim follows for m3 = m1 = m2.

Next we show that (2) implies (3). Let m ∈ Fr. Since G−→ is Noetherian,
there exists an irreducible element NFτ,M (m) ∈ Fr such that m

G−→NFτ,M (m).

Moreover, for each m′ ∈ Fr such that m
G−→m′ the confluence of G−→ implies

m′ G−→NFτ,M (m).
Now suppose that every element has a unique normal form. Let m ∈ Fr be

such that m
G−→ 0. Thus we have a sequence m

g1−→m1
g2−→· · · gk−1−→mk−1

gk−→ 0 where
g1, . . . , gk ∈ G and m1, . . . ,mk−1 ∈ Fr for some k ∈ N. This yields a representation
m =

∑k
i1

ciwigiw
′
i with ci ∈ K \ {0}, and with wi, w

′
i ∈ X∗ for i = 1, . . . , k. Hence

m ∈ 〈G〉 = M . Conversely, every m ∈ M can be written as m =
∑k

i1
ciwigiw

′
i



COMPUTATION OF SYZYGIES OVER NON-COMMUTATIVE RINGS 7

inducing m
{g1,...,gk}−→ 0. Now the claim follows from the uniqueness of NFτ,M (m)

and from the fact that 0 is irreducible with respect to G−→.
Finally, we show the implication (4) ⇒ (1). So, let m ∈ Fr. Using (4), we get

m
G−→ 0. Thus there are elements g1, . . . , gk ∈ G and m1, . . . ,mk−1 ∈ M such that

m
g1−→m1

g2−→· · · gk−1−→mk−1
gk−→ 0. Since in each reduction step one term is replaced

by smaller ones with respect to τ and since the sequence finishes with 0, there has
to be a point where the leading term of m is reduced. Therefore we have LTτ (m) =
wi LTτ (gi)w′i for some i ∈ {1, . . . , k}, and this shows LTτ (m) ∈ LTτ{G}. ¤

At this point we can characterize Gröbner bases in the following way.

Theorem 2.10 (Buchberger’s Criterion).
Let G = {gi | i ∈ I} be a (countable) set of elements in Fr which generate a

two-sided submodule M = 〈G〉 of Fr, and let B be the set of critical pairs between
elements of G. Then the set G is a τ -Gröbner basis of M if and only if Sij

G−→ 0
for all (i, j) ∈ B.

Proof. If G is a τ -Gröbner basis of M then Proposition 2.9 yields m
G−→ 0

for every m ∈ M . Since the S-vector Sij is contained in M for all (i, j) ∈ B, this

implies Sij
G−→ 0.

Now suppose that Sij
G−→ 0 for every critical pair (i, j) of G. By Proposition

2.9, it suffices to show the convergence of G−→. Since G−→ is already Noetherian, only
the local confluence of G−→ has to be proved. Let m,m1,m2 ∈ Fr and gi, gj ∈ G

be such that m
gi−→m1 and m

gj−→m2. Thus we have m1 = m − ciwigiw
′
i and

m2 = m−cjwjgjw
′
j for some ci, cj ∈ K \{0} and wi, w

′
i, wj , w

′
j ∈ X∗. First suppose

that wi LTτ (gi)w′i 6= wj LTτ (gj)w′j , w.l.o.g. let wi LTτ (gi)w′i >τ wj LTτ (gj)w′j . If
wj LTτ (gj)w′j 6∈ Supp(wigiw

′
i) then we obtain an element m3 = m − ciwigiw

′
i −

cjwjgjw
′
j such that m1

gj−→m3 and m2
gi−→m3. In the other case, the element

m3 = m − ciwigiw
′
i − (cj − cci

LCτ (gj)
)wjgjw

′
j where c ∈ K \ {0} is the coefficient of

wj LTτ (gj)w′j in wigiw
′
i satisfies the reduction sequences m1

gj−→m3 and m2
gi−→m−

ciwigiw
′
i − cjwjgjw

′
j

gj−→m3.
Now suppose that wi LTτ (gi)w′i = wj LTτ (gj)w′j . Then we have m2 − m1 =

ciwigiw
′
i − cjwjgjw

′
j = ci LCτ (gi)Sij , and our assumption implies m2 −m1

G−→ 0.

Thus we obtain a reduction sequence m2 − m1

gi1−→m2 − m1 − ci1wi1gi1w
′
i1

=

f1

gi2−→· · · gik−→ fk = 0 with cij ∈ K \ {0}, with wij , w
′
ij
∈ X∗ and with gij ∈ G

for j = 1, . . . , k. In this situation we have ci1 = c′2 − c′1 where c′1, c
′
2 are the

coefficients of wi1 LTτ (gi1)w
′
i1

in m1 and m2 respectively. Considering the reduc-

tions m1

gi1−→m1 − c′1wi1gi1w
′
i1

= h1 and m2

gi1−→m2 − c′2wi1gi1w
′
i1

= h′1, we get
f1 = h′1 − h1. By induction on k, there exist elements hk, h′k ∈ M such that

m1
G−→hk, m2

G−→h′k and fk = h′k − hk. Choosing m3 = hk = h′k yields the

confluence of G−→ which concludes the proof. ¤
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This theorem enables us to formulate the following procedure for computing
Gröbner bases of two-sided modules. Since these Gröbner bases need not be finite,
we have to content ourselves with an enumerating procedure.

Corollary 2.11 (Buchberger’s Procedure).
Let G = {g1, . . . , gs} ⊆ Fr be a set of non-zero elements which generates a two-

sided submodule M ⊆ Fr, and let G = (g1, . . . , gs). Consider the following sequence
of instructions.

(B1) Let B be the set of critical pairs of G and s′ = s.
(B2) If B = ∅, return G and stop. Otherwise choose a pair (i, j) ∈ B using a

fair strategy and delete it from B.
(B3) Compute the S-vector Sij and its normal remainder NRτ,G(Sij). If the

result is zero, continue with step (B2).
(B4) Increase s′ by one. Append gs′ = NRτ,G(Sij) to G, and append {(i, s′) |

1 ≤ i < s′ und (i, s′) ist kritisches Paar} to B. Continue with step (B2).
This is a procedure which enumerates a tuple G of vectors forming a τ -Gröbner
basis of M . If M has a finite τ -Gröbner basis, it stops after finitely many steps
and the vectors of the resulting tuple G form a finite τ -Gröbner basis of M .

Proof. We start by showing the correctness of the procedure. By Proposition
2.10, it suffices to show that, for every critical pair (i, j) which is appended to B at
some point in the procedure, the corresponding S-vector reduces to zero. Let (i, j)
be such a pair. Since we choose the next pair by a fair strategy in step (B2), the
pair (i, j) is chosen at some point. Either the element NRτ,G(Sij) is zero, or it is
appended to G and the S-vector Sij reduces to zero afterwards.

If there exits a finite τ -Gröbner basis G = {g′1, . . . , g′k} of M , and if G is the
enumerated τ -Gröbner basis of M then for each j ∈ {1, . . . , k} the set G contains
an element gij such that LTτ (g′j) = w LTτ (gij )w

′ with w,w′ ∈ X∗. By this we
obtain LTτ{M} = {w LTτ (g′j)w

′ | j ∈ {1, . . . , k}, w, w′ ∈ X∗} ⊆ {w LTτ (gij )w
′ |

j ∈ {1, . . . , k}, w, w′ ∈ X∗} ⊆ {w LTτ (gi)w′ | i ∈ {1, . . . , max{i1, . . . , ik}}, w, w′ ∈
X∗} ⊆ LTτ{M}. Hence {g1, . . . , gmax{i1,...,ik}} forms a τ -Gröbner basis of M , and

therefore we have Sij
G−→ 0 for all (i, j) ∈ B after the procedure has appended the

element gmax{i1,...,ik} to G. Thus the set B is no longer enlarged and the procedure
stops after treating all pairs in B. ¤

Our last topic in this section is to clarify the connection between the Gröbner
basis theory for two-sided modules developed above and the usual Gröbner basis
theory for two-sided ideals in K[X∗].

Proposition 2.12. Let σ be a term ordering on X∗, and let I ⊆ K[X∗] be a
two-sided ideal. Furthermore, let N be the two-sided submodule N = 〈xie1 − e1xi |
i ∈ {1, . . . , n}〉 of F1, and let τ be the module term ordering τ = Pos− σ.

(1) The map π : F1 −→ K[X∗] defined by π(e1) = 1 induces an isomorphism
of two-sided K[X∗]-modules π̄ : F1/N

∼−→K[X∗].
(2) Let I = 〈f1, . . . , fs〉. Then we have π−1(I) = N + 〈e1f1, . . . , e1fs〉.
(3) Let G be a τ -Gröbner basis of π−1(I). Then the set π(G) \ {0} is a σ-

Gröbner basis of I.

Proof. To prove (1), we observe that the map π is a homomorphism of two-
sided modules (see Proposition 2.2). Since π is obviously surjective and since
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Ker(π) ⊇ N , it suffices to show Ker(π) ⊆ N . Let m ∈ Ker(π) \ N be such
that m has minimal leading term with respect to τ . We write m =

∑l
i=1 wie1w

′
i

with ci ∈ K \ {0}, and with wi, w
′
i ∈ X∗ for i = 1, . . . , l. W.l.o.g. let w1e1w

′
1 be

the leading term of m with respect to τ . Since we have π(m) =
∑l

i=1 wiw
′
i = 0,

there exists an index j ∈ {2, . . . , l} such that w1w
′
1 = wjw

′
j . Thus m′ = m −

c1w1e1w
′
1 + c1wje1w

′
j is also an element of Ker(π), but is not contained in N ,

since we have c1w1e1w
′
1 − c1wje1w

′
j ∈ N . This contradicts the choice of m, since

LTτ (m′) <τ LTτ (m).
Next we prove (2). By (1) we know that Ker(π) = N , and therefore we get

π(N + 〈e1f1, . . . , e1fs〉) = π(〈e1f1, . . . , e1fs〉) ⊆ I. To show the other inclusion,
let m ∈ π−1(I). Then we can write π(m) =

∑s
i=1

∑
j∈N cijwijfiw

′
ij with cij ∈ K,

and with wij , w
′
ij ∈ X∗ for i = 1, . . . , s and for all j ∈ N where all but finitely

many of the elements cij are zero. Then the kernel of π contains the element m−∑s
i=1

∑
j∈N cijwije1fiw

′
ij . Now we conclude m ∈ ∑s

i=1

∑
j∈N cijwije1fiw

′
ij + N ⊆

〈e1f1, . . . , e1fs〉+ N .
For the proof of (3), we first show that we have LTσ(π(m)) = π(LTτ (m)) for

every m ∈ F1 \ {0}. Let m ∈ F1 \ {0}, and let w1e1w
′
1 be the leading term of m

with respect to τ . For every term t ∈ Supp(π(m)) such that t 6= w1w
′
1 there exists

a term w2e1w
′
2 ∈ Supp(m) having the image π(w2e1w

′
2) = t. Then the fact that we

have τ = Pos− σ implies π(LTτ (m)) = w1w
′
1 >σ w2w

′
2 = t.

Now let G be a τ -Gröbner basis of π−1(I), and let f ∈ I \ {0}. Again we
write f =

∑s
i=1

∑
j∈N cijwijfiw

′
ij . Then the element f̃ =

∑s
i=1

∑
j∈N cijwije1fiw

′
ij

is contained in 〈e1f1, . . . , e1fs〉 and satisfies π(f̃) = f . Since we have wije1 −
e1wij ∈ N , we obtain another element f =

∑s
i=1

∑
j∈N cije1wijfiw

′
ij ∈ π−1(I).

Here we let e1w be the leading term of f with respect to τ . Since G is a τ -Gröbner
basis of π−1(I), there exist elements g ∈ G and w, w′ ∈ X∗ such that LTτ (f) =
w LTτ (g)w′. This yields w = 1 and LTτ (g) = e1w

′′ for some w′′ ∈ X∗. Hence we
have e1w = e1w

′′w′ and LTσ(f) = LTσ(π(f)) = π(LTτ (f)) = w′′w′ = π(LTτ (g))w′

= LTσ(π(g))w′. Now the claim follows from π(g) ∈ π(G) \ {0}. ¤

3. Elimination and Component Elimination Modules

In the following we let L be a subset of {1, . . . , r}, and we let F̂r denote the
free two-sided K[X∗]-module generated by {ei | i ∈ {1, . . . , r} \ L}.

Definition 3.1. Let M ⊆ Fr be a two-sided submodule. A module term
ordering τ on T(Fr) is called a component elimination ordering for L if every element
m ∈ Fr \ {0} such that LTτ (m) ∈ F̂r is contained in F̂r.

The two-sided submodule M ∩ F̂r of F̂r is called the component elimination
module of M with respect to L.

Example 3.2. Let i ∈ {1, . . . , r}, and let L = {1, . . . , i}. If To is a term
ordering on X∗ then the module ordering τ = PosTo is a component elimination
ordering for L. Namely, let m ∈ Fr \ {0} be such that LTτ (M) = w1ejw

′
1 ∈ F̂r.

Then every term t = w2ekw′2 ∈ Supp(m) satisfies t ≤τ LTτ (m). This implies k ≥ j,
and we conclude that t ∈ F̂r and m ∈ F̂r.

The following theorem shows how one can compute component elimination
modules. In fact, it yields a Gröbner basis with respect to the restriction to F̂r of
the given component elimination ordering.
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Theorem 3.3 (Computation of Component Elimination Modules).
Let M be a two-sided submodule of Fr, let L ⊆ {1, . . . , r}, and let τ be a

component elimination ordering for L. Furthermore, let G be a τ -Gröbner basis
of M , and let τ̂ be the restriction of τ to T(F̂r). Then the set Ĝ = G ∩ F̂r is a
τ̂ -Gröbner basis of M ∩ F̂r.

Proof. Let m ∈ (M ∩ F̂r)\{0}. Then we have LTbτ (m) = LTτ (m) ∈ LTτ{M}
because τ̂ is the restriction of τ . Since G is a τ -Gröbner basis of M , there exists an
element g ∈ G such that LTbτ (m) = w LTτ (g)w′ for some w, w′ ∈ X∗. But then we
have LTτ (g) ∈ F̂r, and the assumption that τ is a component elimination ordering
for L yields g ∈ F̂r, i.e. g ∈ Ĝ = G ∩ F̂r. Now the fact that LTτ (g) = LTbτ (g)
concludes the proof. ¤

Generalizing the methods and results of M. Caboara and C. Traverso, we first
show how one can compute the intersection of two two-sided submodules of Fr

using component elimination. In the following let F2r denote the free two-sided
K[X∗]-module with canonical basis {e1, . . . , er, er+1, . . . , e2r}.

Proposition 3.4 (Intersection of Submodules).
Let M and N be two-sided submodules of Fr, let {g1, . . . , gs} be a system of

generators of M, and let {h1, . . . , ht} be a system of generators of N. For every
m ∈ Fr, let m denote the corresponding element in F2r. Finally, for every hk =∑r

i=1

∑
j∈N cijwijeiw

′
ij let h′k =

∑r
i=1

∑
j∈N cijwijer+iw

′
ij, and let V be the two-

sided submodule of F2r generated by {g1, . . . , gs, h1 − h′1, . . . , ht − h′t}. Then we
have

V ∩ 〈er+1, . . . , e2r〉 ∼= M ∩N.

Proof. We consider the homomorphism ψ : F̂2r = 〈er+1, . . . , e2r〉 −→ Fr

defined by ψ(er+i) = ei for i = 1, . . . , r. The restriction ϕ of ψ to V ∩ F̂2r is
obviously an injective homomorphism. Therefore it remains to show that Im(ϕ) =
M ∩N . For every m ∈ M ∩N we can write m =

∑s
i=1

∑
j∈N bijvijgiv

′
ij , but also

m =
∑t

i=1

∑
j∈N cijwijhiw

′
ij with bij , ckj ∈ K, and with vij , v

′
ij , wkj , w

′
kj ∈ X∗

for i = 1, . . . , s, for k = 1, . . . , t and for all j ∈ N where all but finitely many
of the bij and ckj are zero. From this we get m ∈ V and the element m′ =∑t

i=1

∑
j∈N cijwijh

′
iw
′
ij ∈ F̂2r such that m′ =

∑t
i=1

∑
j∈N cijwij(h′i − hi)w′ij +∑t

i=1

∑
j∈N cijwijhiw

′
ij ∈ V . Thus we found an element m′ ∈ V ∩ F̂2r satisfying

ϕ(m′) = m.
Conversely, let m ∈ V ∩ F̂2r, i.e. we have m =

∑s
i=1

∑
j∈N bijvijgiv

′
ij +∑t

i=1

∑
j∈N cijwij(hi − h′i)w

′
ij . Applying ϕ yields ϕ(m) =

∑s
i=1

∑
j∈N bijvijgiv

′
ij ,

and we get ϕ(m) ∈ M . Furthermore, since m is contained in F̂2r, we also have∑s
i=1

∑
j∈N bijvijgiv

′
ij +

∑t
i=1

∑
j∈N cijwijhiw

′
ij = 0. Consequently, this implies

ϕ(m) = −∑t
i=1

∑
j∈N cijwijhiw

′
ij ∈ N . Altogether, we conclude that Im(ϕ) =

M ∩N and obtain the claim. ¤

Another application is the computation of two-sided syzygies of a tuple of
vectors. More precisely, we want to compute the two-sided syzygy module which is
defined as follows.
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Definition 3.5. Let Fs be the free two-sided K[X∗]-module generated by
{ε1, . . . , εs}, and let G = (g1, . . . , gs) be a tuple of vectors of Fr. The (two-sided)
syzygy module of G is defined as the kernel of the homomorphism λ : Fs −→ Fr

given by εi 7→ gi for i = 1, . . . , s. We will denote it by Syz(G).

The computation of two-sided syzygy modules is based on the following propo-
sition. Let Fr+s be the free two-sided K[X∗]-module generated by {e1, . . . , er+s}.

Proposition 3.6. Let G = {g1, . . . , gs} ⊆ Fr \ {0}, let G = (g1, . . . , gs), and
for every m ∈ Fr let m denote the corresponding element in Fr+s. Let U be the
two-sided submodule of Fr+s generated by {g1−er+1, . . . , gs−er+s}. Then we have

U ∩ 〈er+1, . . . , er+s〉 ∼= Syz(G).

Proof. We consider the homomorphism ψ : F̂r+s = 〈er+1, . . . , er+s〉 −→ Fs

given by er+i 7→ εi for i = 1, . . . , s. Again we obtain an injective homomorphism ϕ

by restricting ψ to U ∩ F̂r+s. Therefore it suffices to prove that Im(ϕ) = Syz(G).
Let m =

∑s
i=1

∑
j∈N cijwijεiw

′
ij be an element of Syz(G) with cij ∈ K, and with

wij , w
′
ij ∈ X∗ for i = 1, . . . , s and for all j ∈ N where all but finitely many of

the elements cij are zero. Then the element m =
∑s

i=1

∑
j∈N cijwijer+iw

′
ij =∑s

i=1

∑
j∈N cijwijgiw

′
ij −

∑s
i=1

∑
j∈N cijwij(g − er+i)w′ij is contained in U ∩ F̂r+s,

and it satisfies ϕ(m) = m.
Now let U ∩ F̂r+s contain the element m =

∑s
i=1

∑
j∈N cijwijer+iw

′
ij . Then

we have λ(ϕ(m)) =
∑s

i=1

∑
j∈N cijwijgiw

′
ij =

∑s
i=1

∑
j∈N cijwij(g − er+i)w′ij +∑s

i=1

∑
j∈N cijwijer+iw

′
ij ∈ U . Moreover, none of the free generators er+1, . . . , er+s

appears in the representation of λ(ϕ(m)). Since U is generated by the elements
{g1− er+1, . . . , gs− er+s}, this implies λ(ϕ(m)) = 0. Hence we get ϕ(m) ∈ Syz(G).

¤

Using the result of the above proposition, we are able to formulate the following
procedure for the computation of the syzygy module of a tuple of vectors in Fr.

Theorem 3.7 (Computation of Two-Sided Syzygy Modules over K[X∗]).
Let G = {g1, . . . , gs} ⊆ Fr \ {0} and let G = (g1, . . . , gs). Let ϕ : F̂r+s −→ Fs

be the homomorphism defined by er+i 7→ εi for i = 1, . . . , s, and for every m ∈ Fr

let m denote the corresponding element in Fr+s. Consider the following sequence
of instructions.

(1) Choose a component elimination ordering τ for L = {1, . . . , r} on T(Fr+s).
(2) Compute a τ -Gröbner basis G of the two-sided submodule U = 〈g1 −

er+1, . . . , gs − er+s〉 of Fr+s.
(3) Compute Ĝ = G ∩ F̂r+s. Return ϕ(Ĝ) and stop.

This is a procedure which enumerates a τ̂ -Gröbner basis of the two-sided syzygy
module Syz(G) of G where τ̂ is the restriction of τ to T(F̂r+s).

Proof. By Proposition 3.6, the two-sided module U ∩ F̂r+s is isomorphic to
Syz(G). Since U ∩ F̂r+s is also the component elimination module of U with respect
to L, Theorem 3.3 implies that the set Ĝ computed in step (3) of the procedure
forms a τ̂ -Gröbner basis of U ∩ F̂r+s, i.e. the set ϕ(Ĝ) is a τ̂ -Gröbner basis of
Syz(G). ¤
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Combining the results of Proposition 3.4 and of Proposition 3.6, we obtain
a procedure for computing the intersection of two syzygy modules based on the
following proposition.

Proposition 3.8. Let G = (g1, . . . , gs),H = (h1, . . . , hs) ∈ F s
r , and for every

m ∈ Fr let m denote the corresponding element in F2r+2s. Furthermore, for every
hi =

∑r
i=1

∑
j∈N cijwijeiw

′
ij let h′ =

∑r
i=1

∑
j∈N cijwijer+iw

′
ij ∈ F2r+2s, and let U

be the two-sided submodule of F2r+2s generated by {g1− e2r+1, . . . , gs− e2r+s, h
′
1−

e2r+1 − e2r+s+1, . . . , h
′
s − e2r+s − e2r+2s}. Then we have

U ∩ 〈e2r+s+1, . . . , e2r+2s〉 ∼= Syz(G) ∩ Syz(H).

Proof. We let F̂2r+2s = 〈e2r+s+1, . . . , e2r+2s〉 and consider the homomor-
phism ψ : F̂2r+2s −→ Fs given by e2r+s+i 7→ εi for i = 1, . . . , s. We will show that
Syz(G)∩Syz(H) equals the image of ϕ where ϕ is the restriction of ψ to U ∩ F̂2r+2s.
Since ϕ is obviously an injective homomorphism, this fact will conclude the proof.

First let m =
∑s

i=1

∑
j∈N cijwijεiw

′
ij be an element of Syz(G) ∩ Syz(H) with

cij ∈ K, and with wij , w
′
ij ∈ X∗ for i = 1, . . . , s and for all j ∈ N where all but

finitely many of the cij are zero. The element m′ =
∑s

i=1

∑
j∈N cijwije2r+s+iw

′
ij

is contained in F̂2r+2s and satisfies ϕ(m′) = m. Moreover, we can write m′ as
m′ =

∑s
i=1

∑
j∈N cijwij(h′i−e2r+i)w′ij−

∑s
i=1

∑
j∈N cijwij(h′i−e2r+i−e2r+s+i)w′ij

where the second summand is an element of U . Since we have m ∈ Syz(G)∩Syz(H),
the first summand is equal to

∑s
i=1

∑
j∈N cijwij(gi − e2r+i)w′ij ∈ U . Hence m′ is

already contained in U .
Now we let m =

∑s
i=1

∑
j∈N cijwije2r+s+iw

′
ij be an element of U ∩ F̂2r+2s. The

above equation yields
∑s

i=1

∑
j∈N cijwij(h′i− e2r+i)w′ij ∈ U . Using the fact that U

contains the element
∑s

i=1

∑
j∈N cijwij(gi−e2r+i)w′ij , we get

∑s
i=1

∑
j∈N cijwij(h′i−

gi)w′ij ∈ U . Since none of the generators e2r+1, . . . , e2r+2s appears in this sum,
we must have

∑s
i=1

∑
j∈N cijwij(h′i − gi)w′ij = 0, i.e.

∑s
i=1

∑
j∈N cijwijh

′
iw
′
ij =∑s

i=1

∑
j∈N cijwijgiw

′
ij . Now, from the facts that we have gi ∈ 〈e1, . . . , er〉 and

h′i ∈ 〈er+1, . . . , e2r〉 for i = 1, . . . , s, it follows that both sums are zero. Hence the
image of m under ϕ is a two-sided syzygy of G and of H. ¤

In the same way as in Theorem 3.7, we obtain a procedure for computing the
module of two-sided syzygies of tuples of polynomials instead of vectors. For this
purpose we need a condition equivalent to Proposition 3.6.

Proposition 3.9. Let G = {g1, . . . , gs} ⊆ K[X∗] \ {0}, let G = (g1, . . . , gs),
and let U be the two-sided submodule of Fs+1 generated by {e1g1 − e2, . . . , e1gs −
es+1, x1e1 − e1x1, . . . , xne1 − e1xn}. Then we have

U ∩ 〈e2, . . . , es+1〉 ∼= Syz(G).

Proof. In analogy to the proof of Proposition 3.6, we consider the injec-
tive homomorphism ϕ : U ∩ F̂s+1 −→ Fs given by ϕ(ei+1) = εi for i = 1, . . . , s
and show Im(ϕ) = Syz(G). First we let m =

∑s
i=1

∑
j∈N cijwijεiw

′
ij ∈ Syz(G)

with cij ∈ K, and with wij , w
′
ij ∈ X∗ for i = 1, . . . , s and for all j ∈ N where

all but finitely many of the elements cij are zero. Again we have the element
m =

∑s
i=1

∑
j∈N cijwijei+1w

′
ij ∈ F̂s+1 such that ϕ(m) = m. Now we can write m =∑s

i=1

∑
j∈N cijwije1giw

′
ij −

∑s
i=1

∑
j∈N cijwij(e1gi− ei+1)w′ij where the right sum-

mand is contained in U . The left summand is equal to
∑s

i=1

∑
j∈N cije1wijgiw

′
ij +
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∑s
i=1

∑
j∈N cij(wije1 − e1wij)giw

′
ij . Here the second summand is again contained

in U because wije1 − e1wij ∈ N for i = 1, . . . , s and for all j ∈ N. And since we
have m ∈ Syz(G), the first summand equals zero. Altogether, we conclude that
m ∈ U ∩ F̂s+1.

Now let U ∩ F̂s+1 contain the element m =
∑s

i=1

∑
j∈N cijwijei+1w

′
ij , and let

m′ =
∑s

i=1

∑
j∈N cijwije1giw

′
ij . Then we get λ(ϕ(m)) =

∑s
i=1

∑
j∈N cijwijgiw

′
ij =

π(m′). If we write m′ as m′ = m +
∑s

i=1

∑
j∈N cijwij(e1gi − ei+1)w′ij , we see that

m′ ∈ U and even m′ ∈ N , since none of the generators e2, . . . , es+1 is contained
in the representation of m′. Thus, by Proposition 2.12 (1), we deduce λ(ϕ(m)) =
π(m′) = 0 and therefore ϕ(m) ∈ Syz(G). ¤

Corollary 3.10. Let G = {g1, . . . , gs} ⊆ K[X∗] \ {0}, let G = (g1, . . . , gs),
and let ϕ : F̂s+1 −→ Fs be the homomorphism defined by ei+1 7→ εi for i = 1, . . . , s.
Consider the following sequence of instructions.

(1) Choose a component elimination ordering τ for L = {1} on T(Fs+1).
(2) Compute a τ -Gröbner basis G of the two-sided submodule U = 〈e1g1 −

e2, . . . , e1gs − es+1, x1e1 − e1x1, . . . , xne1 − e1xn〉 of Fs+1.
(3) Compute Ĝ = G ∩ F̂s+1. Return ϕ(Ĝ) and stop.

This is a procedure which enumerates a τ̂ -Gröbner basis of the two-sided syzygy
module Syz(G) of G where τ̂ is the restriction of τ to T(F̂s+1).

Proof. The claim is a direct consequence of Theorem 3.3 and Proposition
3.9. ¤

4. Two-Sided Syzygies over Residue Class Rings of K[X∗]

In this section we let I ⊆ K[X∗] be a two-sided ideal, we let GI = {f1, . . . , ft}
be a σ-Gröbner basis of I, and we let R = K[X∗]/I. First we give a short intro-
duction to Gröbner basis theory of two-sided R-submodules of the free two-sided
R-module F r =

⊕r
i=1 Renv. For this purpose we generalize the theory of prefix

Gröbner bases of K. Madlener and B. Reinert.
In the following we denote the residue class of an element f ∈ K[X∗] in R

by f . Since GI is a σ-Gröbner basis of I by assumption, the rewrite relation GI−→ is
convergent (see Proposition 2.9). Therefore every element in K[X∗] has a unique
normal form. Hence we let a residue class f ∈ R always be represented by an
irreducible element f ∈ K[X∗] with respect to GI−→.

Now we let T(R) = {w | w ∈ X∗, w irreducible with respect to GI−→} denote
the set of all terms in R. The product of two terms w1, w2 ∈ T(R) will be written
as w1w2 and the concatenation of the corresponding elements in K[X∗] as w1 ·w2.
Moreover, we will denote the identity in K[X∗] by ≡.

In order to define a Gröbner basis we need a module term ordering on T(F r).
But in our setting we can have wt1w

′ >τ wt2w
′ for terms t1, t2 ∈ T(F r) and

w, w′ ∈ T(R) where t1 ≤τ t2. Therefore we use rewrite relations to introduce
Gröbner bases. Then for elements m, g ∈ F r we have to decide whether there
exists a term t ∈ Supp(m) such that t = w LTτ (g)w′ for some w, w′ ∈ T(R). Since
this is not solvable in T(R), we consider t ≡ w · LTτ (g) ·w′ instead of the equation
t = w LTτ (g)w′ in analogy to the theory of prefix rewriting.
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Definition 4.1. Let g,m ∈ F r, and let G ⊆ F r. If there exists a term
w1eiw

′
1 ∈ Supp(m) and elements w2, w

′
2 ∈ T(R) such that w2 ·LTτ (g)·w′2 ≡ w1eiw

′
1,

we say that g reduces m in a two-sided reduction step to m′ = m − c
LCτ (g)w2gw′2,

and we denote it by m
g−→∗m′. Here c ∈ K is the coefficient of w1eiw

′
1 in m.

The reflexive and transitive closure of
⋃

g∈G

g−→∗ will be denoted by G−→∗ and

the reflexive, symmetric and transitive closure by G←→∗.

For every two-sided reduction step, we have LTτ (m) >τ LTτ (m′) because of
the following lemma.

Lemma 4.2. Let m =
∑r

i=1

∑
j∈N cijwijeiw

′
ij be a non-zero element of F r with

cij ∈ K, and with wij , w
′
ij ∈ T(R) such that wij and w′ij are irreducible with respect

to GI−→ for i = 1, . . . , r and for all j ∈ N. Furthermore, let w1ekw′1 be the leading
term of m with respect to τ , and let w, w′ ∈ T(R) be such that ww1 and w′1w

′ are
irreducible with respect to GI−→. Then we have

w · LTτ (m) · w′ ≡ w LTτ (m)w′ = LTτ (wmw′).

Proof. Since ww1 and w′1w
′ are irreducible with respect to GI−→, we already

know w · LTτ (m) · w′ ≡ w LTτ (m)w′. Moreover, for every term t = w2elw
′
2 ∈

Supp(m) we get wtw′ ≤τ w · t · w′ ≡ ww2elw
′
2w

′ ≤τ ww1ekw′1w
′ ≡ ww1ekw′1w′.

We deduce that every term in wmw′ is smaller than or equal to w LTτ (m)w′ which
concludes the proof. ¤

For every subset G of F r the rewrite relation G−→∗ is again Noetherian. How-
ever, it is not true that m

G←→∗ 0 for every element m of the two-sided R-module
generated by G. Hence we define a Gröbner basis in the following way.

Definition 4.3. Let M be a two-sided R-submodule of F r. A set G ⊆ M is
called a (two-sided) Gröbner basis of M if the rewrite relation G−→∗ is confluent
and if we have m

G←→∗ 0 for all m ∈ M .

The following proposition shows that two-sided Gröbner bases defined in this
way share many of the nice properties of normal Gröbner bases.

Proposition 4.4. Let M be a two-sided R-submodule of F r, and let G ⊆ M .
Then the following conditions are equivalent.

(1) The set G is a Gröbner basis of M .
(2) Every non-zero element m ∈ M can be written as m =

∑k
i=1 ciwigiw

′
i with

ci ∈ K \ {0}, with wi, w
′
i ∈ T(R) and with gi ∈ G such that LTτ (m) ≥τ

wi · LTτ (gi) · w′i ≥τ LTτ (wigiw
′
i) for i = 1, . . . , k.

(3) We have LTτ{M} = {w · LTτ (g) · w′ | g ∈ G, w, w′ ∈ T(R)}.

Proof. First we prove (1) ⇒ (2). For every m ∈ M \ {0} we have m
G←→∗ 0,

since G is a Gröbner basis of M . From the facts that zero is always irreducible and
that the normal form of an element is unique we can even conclude that m

G−→∗ 0.
Thus we can write m as m =

∑k
i=1 ciwigiw

′
i with ci ∈ K \ {0}, with wi, w

′
i ∈ T(R),

and with gi ∈ G for i = 1, . . . , k. But then we already have LTτ (m) ≥τ wi ·LTτ (gi) ·
w′i ≡ LTτ (wigiw

′
i).
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To show that (2) implies (3), we assume that m ∈ M has a representation as in
(2). Then there must be an index i ∈ {1, . . . , k} such that LTτ (m) = LTτ (wigiw

′
i).

By Lemma 4.1, we obtain LTτ (m) ≡ wi · LTτ (gi) · w′i.
Finally, we prove the implication (3) ⇒ (1). Let m ∈ M \ {0}. By condition

(3), there exist elements w1, w
′
1 ∈ T(R) and g1 ∈ G such that LTτ (m) ≡ w1 ·

LTτ (g1) · w′1. The corresponding two-sided reduction of m by g1 yields an element
m1 = m − LCτ (m)

LCτ (g1)
w1g1w

′
1 ∈ M where LTτ (m) >τ LTτ (m1). If m1 is not zero,

we find another element g2 ∈ G which reduces m1 in a two-sided step to m2 ∈ M .
Again we have LTτ (m1) >τ LTτ (m2). Since the rewrite relation G−→∗ is Noetherian,
this can be done only finitely many times. Hence we obtain elements g1, . . . , gl ∈ G

and m1, . . . , ml ∈ M such that m
g1−→∗m1

g2−→∗ · · · gl−→∗ml. Now ml is irreducible
with respect to G−→∗. This implies m = 0, i.e. m

G−→∗ 0. The confluence of G−→∗
follows in the same way as in the proof of Proposition 2.9. ¤

The computation of the two-sided syzygy module of a tuple (g1, . . . , gs) ∈ Rs,
which is again defined as the kernel of the homomorphism λ : F s −→ R, εi 7→ gi,
consists of two steps. First we compute the corresponding syzygy module over
K[X∗] by Corollary 3.9. Then we project the result to our setting via the following
mapping. The canonical surjective homomorphism η : K[X∗] −→ R, f 7→ f induces
a homomorphism η̃ = η ⊗K η : F1 −→ F 1 of two-sided modules which can be
extended to the free K[X∗]-module Fs generated by {ε1, . . . , εs}. In the following
we let ψ : Fs+t −→ F s be the homomorphism given by

∑s+t
i=1

∑
j∈N cijwijεiw

′
ij 7→∑s+t

i=s+1

∑
j∈N cijwijεi−sw

′
ij . We still have R = K[X∗]/I where I is the two-sided

ideal generated by {f1, . . . , ft}.
Proposition 4.5. Let G = (g1, . . . , gs) ∈ Rs, and let G = (g1, . . . , gs, f1, . . . , ft)

be a tuple in K[X∗]s+t. Furthermore, let τ̃ be a module term ordering on T(Fs+t)
such that τ is the restriction of τ̃ to T(Fs) and such that we have εi >τ̃ εj for all
i ∈ {1, . . . , s} and for all j ∈ {s+1, . . . , s+ t}. If G is a τ̃ -Gröbner basis of Syz(G)
then ψ(G) \ {0} is a Gröbner basis of Syz(G).

Proof. We start by showing ψ(G) ⊆ Syz(G). Let g be an element of G. We
can write g =

∑s+t
i=1

∑
j∈N cijwijεiw

′
ij with cij ∈ K, and with wij , w

′
ij ∈ X∗ for

i = 1, . . . , s + t and for all j ∈ N where all but finitely many of the cij are zero.
Then we have

∑s
i=1

∑
j∈N cijwijgiw

′
ij +

∑s+t
i=s+1

∑
j∈N cijwijfi−sw

′
ij = 0. From this

we can see that ψ(g) =
∑s

i=1 cijwijgiw
′
ij = 0 and therefore ψ(g) ∈ Syz(G).

Now let G be a τ̃ -Gröbner basis of Syz(G), and let m ∈ Syz(G) \ {0}. The
element m can be written as m =

∑s
i=1

∑
j∈N cijwijεiw

′
ij with cij ∈ K, and with

wij , w
′
ij ∈ T(R) for i = 1, . . . , s and for all j ∈ N where all but finitely many of the

cij are zero. The equation
∑s

i=1

∑
j∈N cijwijgiw

′
ij = 0 implies

∑s
i=1

∑
j∈N cijwij ·

gi·w′ij ∈ I. Thus there are elements bij ∈ K and vij , v
′
ij ∈ X∗ for i = 1, . . . , t and for

j ∈ N such that
∑s

i=1

∑
j∈N cijwij ·gi ·w′ij =

∑t
i=1

∑
j∈N bijvijfiv

′
ij . In other words,

we have
∑s

i=1

∑
j∈N cijwijgiw

′
ij −

∑t
i=1

∑
j∈N bijvijfiv

′
ij = 0. Hence the element

m′ =
∑s

i=1

∑
j∈N cijwijεiw

′
ij −

∑t
i=1

∑
j∈N bijvijεs+iv

′
ij is contained in Syz(G) and

satisfies ψ(m′) = m. Since G is a τ̃ -Gröbner basis of Syz(G) and since the leading
monomial of m′ is a summand in the first sum, there exist elements g ∈ G and
w, w′ ∈ X∗ such that w LTτ̃ (g)w′ = LTτ̃ (m′) ≡ LTτ (m). The claim is proved if
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we show the validity of the relation w · LTτ (ψ(g)) · w′ ≡ LTτ (m). Let LTτ̃ (m′) =
wijεiw

′
ij for some i ∈ {1, . . . , s} and some j ∈ N, and let LTτ̃ (g) = w1εiw2 with

w1, w2 ∈ X∗. Since wij and w′ij are irreducible with respect to GI−→, the elements w1

and w2 are also irreducible. Thus we have LTτ (ψ(g)) = ψ(LTτ̃ (g)). Now the claim
follows from LTτ (m) ≡ w ·LTτ̃ (g) ·w′ ≡ w ·ψ(LTτ̃ (g)) ·w′ ≡ w ·LTτ (ψ(g)) ·w′. ¤

Finally, by combining the preceding results we obtain the following procedure
for computing the module of two-sided syzygies of a tuple of elements of R.

Proposition 4.6 (Computation of Two-Sided Syzygy Modules over R).
Let G = (g1, . . . , gs) ∈ Rs, and let U be the two-sided K[X∗]-submodule of Fs+1

generated by {ε1g1−ε2, . . . , ε1gs−εs+1, ε1f1, . . . , ε1ft, x1ε1−ε1x1, . . . , xnε1−ε1xn}.
Consider the following sequence of instructions.

(1) Choose a component elimination ordering τ̃ for L = {1} on T(Fs+1) such
that τ is the restriction of τ̃ on T(Fs).

(2) Compute a τ̃ -Gröbner basis G of U .
(3) Compute Ĝ = G ∩ F̂s+1. Return ψ(Ĝ) \ {0} and stop.

This is a procedure which enumerates a Gröbner basis of the two-sided syzygy module
of G.

Proof. First we prove that ψ(U ∩ F̂s+1) ⊆ Syz(G). Let m ∈ U ∩ F̂s+1.
Here we can write m as m =

∑s
i=1

∑
j∈N cijwijεi+1w

′
ij with cij ∈ K, and with

wij , w
′
ij ∈ X∗ for i = 1, . . . , s and for all j ∈ N where all but finitely many of

the cij are zero. If we let m′ =
∑s

i=1

∑
j∈N cijwijε1giw

′
ij , we get the equation

m = m′−∑s
i=1

∑
j∈N cijwij(ε1gi−εi+1)w′ij . Since the second summand is contained

in U , we also have m′ ∈ U . Moreover, none of the generators ε2, . . . , εs+1 appears
in the representation of m′. Thus m′ is even an element of the two-sided K[X∗]-
submodule of Fs+1 generated by {ε1f1, . . . , ε1ft, x1ε1−ε1x1, . . . , xnε1−ε1xn}, and
we can write m′ as m′ =

∑t
i=1

∑
j∈N bijvijε1fiv

′
ij +m′′ with m′′ ∈ N , with bij ∈ K,

and with vij , v
′
ij ∈ X∗ for i = 1, . . . , t and for all j ∈ N where all but finitely

many of the bij are zero. By applying the homomorphisms λ and ψ to m, we get
λ(ψ(m)) =

∑s
i=1

∑
j∈N cijwijgiw

′
ij = π(m′) =

∑t
i=1

∑
j∈N bijvijf iv

′
ij = 0. Hence

we can conclude that ψ(m) ∈ Syz(G).
Now we prove that the set ψ(Ĝ) is in fact a Gröbner basis of Syz(G). By Theo-

rem 3.3, the set Ĝ computed in steps (2) and (3) is a τ -Gröbner basis of U ∩ F̂s+1.
We take an element m ∈ Syz(G) \ {0}, i.e. m =

∑s
i=1

∑
j∈N cijwijεiw

′
ij with

cij ∈ K, and with wij , w
′
ij ∈ T(R) for i = 1, . . . , s and for all j ∈ N where all but

finitely many of the cij are zero. Then the element m′ =
∑s

i=1

∑
j∈N cijwijεi+1w

′
ij

is contained in F̂s+1 and it satisfies ψ(m′) = m. Again we can write m′ =∑s
i=1

∑
j∈N cijwijε1giw

′
ij−

∑s
i=1

∑
j∈N cijwij(ε1gi−εi+1)w′ij where the second sum-

mand is contained in U . The first summand equals
∑s

i=1

∑
j∈N cijε1wijgiw

′
ij +∑s

i=1

∑
j∈N cij(wijε1 − ε1wij)giw

′
ij . Since m is a two-sided syzygy of G, we get∑s

i=1

∑
j∈N cijwijgiw

′
ij ∈ I, i.e.

∑s
i=1

∑
j∈N cijε1wijgiw

′
ij is an element of the

two-sided K[X∗]-submodule 〈ε1f1, . . . , ε1ft, x1ε1 − ε1x1, . . . , xnε1 − ε1xn〉 of U .
Altogether, we obtain m′ ∈ U ∩ F̂s+1. Thus there exist elements g ∈ Ĝ and
w, w′ ∈ X∗ such that LTτ (m′) = w LTτ (g)w′. Let w1εiw2 be the leading term
of m′ for some w1, w2 ∈ X∗ and some i ∈ {2, . . . , s + 1}. Then w1 and w2 are
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irreducible with respect to GI−→ by assumption. This yields LTτ (m) ≡ LTτ (m′) =
w LTτ (g)w′ ≡ w · ψ(LTτ (g)) · w′ ≡ w · LTτ (ψ(g)) · w′. Therefore the claim follows
from ψ(g) ∈ ψ(Ĝ) \ {0}. ¤

For the next corollary we let ψ : F2s+2 −→ F s be the homomorphism given by∑2s+2
i=1

∑
j∈N cijwijεiw

′
ij 7→

∑2s+2
i=s+3

∑
j∈N cijwijεi−s−2w

′
ij .

Corollary 4.7. Let G = (g1, . . . , gs),H = (h1, . . . , hs) ∈ Rs, and let U be
the two-sided K[X∗]-submodule of F2s+2 generated by the set {ε1g1− ε3, . . . , ε1gs−
εs+2, ε2h1 − ε3 − εs+3, . . . , ε2hs − εs+2 − ε2s+2, ε1f1, . . . , ε1ft, ε2f1, . . . , ε2ft, x1ε1 −
ε1x1, . . . , xnε1−ε1xn, x1ε2−ε2x1, . . . , xnε2−ε2xn}. Consider the following sequence
of instructions.

(1) Choose a component elimination ordering τ̃ for {1, 2} on T(F2s+2) which
is also a component elimination ordering for {1, . . . , s + 2} such that τ is
the restriction of τ̃ on T(Fs).

(2) Compute a τ̃ -Gröbner basis G of U .
(3) Compute Ĝ = G ∩ 〈εs+3, . . . , ε2s+2〉. Return ψ(Ĝ) \ {0} and stop.

This is a procedure which enumerates a Gröbner basis of the intersecton of the
two-sided syzygy modules Syz(G) and Syz(H).

Proof. The claim follows in the same way as in the proof of Proposition 3.8
using the idea of Proposition 4.6. ¤

At the beginning of this section we assumed that {f1, . . . , ft} forms a σ-Gröbner
basis of the two-sided ideal I. This assumption can be replaced by a weaker con-
dition. It suffices that there exists a finite σ-Gröbner basis of I containing the set
{f1, . . . , ft}, since we have Syz(g1, . . . , gs, f1, . . . , ft) ⊆ Syz(g1, . . . , gs, f1, . . . , ft+u)
for all u ≥ 0.

5. Applications

In this section we want to show that one can apply the above methods to solve
the Conjugator Search Problem (CSP) in certain finitely presented groups.

Problem 5.1 (CSP). Given a group G and two elements g, h ∈ G which are
known to be conjugated to each other (i.e. such that there exists an element a ∈ G
for which ag = ha), find a conjugator (i.e. find such an element a).

To this end, we make the following assumptions.
(1) The group G is finitely presented as a monoid by generators and rela-

tions. In other words, there exists a finite alphabet X = {x1, . . . , xn} and
an equivalence relation ∼W which is the normal closure of finitely many
relations w1 ∼ w′1, . . . , wt ∼ w′t such that G = X∗/ ∼W .

(2) There exists a term ordering σ on X∗ such that wi >σ w′i for i = 1, . . . , t.
(3) The word rewriting system W−→ generated by wi

W−→w′i for i = 1, . . . , t is
convergent, i.e. it is terminating and confluent.

Thus we can use W−→ to present the residue class of a word w ∈ X∗ in G

uniquely by its normal form NFW (w). In particular, we can use W−→ to solve the
word problem in G. In the following, we shall frequently identify elements of G
with the normal form of words representing them. For elements w, w′ ∈ X∗ we
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denote the product of their images in G by ww′. Their product in X∗, i.e. their
concatenation, will be denoted by w ·w′. Equality of elements in G will be denoted
by = while for equality of words in X∗ we will use the symbol ≡.

Finally, we let K be an arbitrary field.

Remark 5.2.

(1) The group ring

K[G] =

{
k∑

i=1

ciwi | k ≥ 0, ci ∈ K \ {0}, wi ∈ G

}

satisfies K[G] = K[X∗]/I where K[X∗] is the non-commutative polyno-
mial ring and I is the two-sided ideal in K[X∗] generated by {wi − w′i |
i = 1, . . . , t}.

(2) The elements {wi − w′i | i = 1, . . . , t} form a two-sided σ-Gröbner basis
of I. In particular, I is a binomial ideal.

(3) Let w,w′ ∈ X∗ be words representing conjugated elements in G. The so-
lutions of CSP correspond uniquely to the two-sided syzygies of (w, w′) ∈
K[X∗]2 of the form aε1 − ε2a where (ε1, ε2) denotes the canonical basis
of the free two-sided K[G]-module of rank two and where a ∈ G.

To compute this syzygy module, we can use Proposition 4.6. Hence the re-
maining task is to find an element f of the form aε1 − ε2a in this module. This
task can be solved as follows.

Proposition 5.3 (The Conjugator Search Algorithm).
In the setting described above, let w,w′ ∈ X∗ be two words representing conju-

gated elements of the group G. Consider the following sequence of instructions.
(1) Let F6 be the free two-sided module of rank 6 over K[X∗]. In F6 form

the two-sided submodule U = 〈ε1w − ε3, ε1w
′ − ε4, ε2 − ε3 − ε5, ε2 +

ε4 + ε6, ε1(w1−w′1), . . . , ε1(wt−w′t), ε2(w1−w′1), . . . , ε2(wt−w′t), x1ε1−
ε1x1, . . . , xnε1 − ε1xn, x1ε2 − ε2x1, . . . , xnε2 − ε2xn〉.

(2) Choose the following module term ordering τ on F5:
for t1, t

′
1, t2, t

′
2 ∈ X∗, let

t1eit
′
1 >τ t2ejt

′
2 ⇐⇒ i < j or

(i = j and t′1 >σ t′2) or
(i = j and t′1 = t′2 and t1 >σ t2).

Compute an interreduced two-sided τ -Gröbner basis A von U .
(3) In A, there exist elements whose leading term is of the form tiε5 where

ti ∈ X∗ is the normal form with respect to W−→. Return the words ti and
stop.

This is an algorithm which solves the conjugator search problem in G.

Proof. It is clear that the module term ordering τ defined in step (2) is an
elimination ordering for both L = {1, 2} and L′ = {1, 2, 3, 4}. Hence Corollary 4.7
shows that the elements of A ∩ 〈ε5, ε6〉 form a Gröbner basis of the intersection of
SyzK[G](w, w′) and SyzK[G](1,−1).

By assumption, there exists a word a ∈ X∗ representing a conjugator such that
aw = w′a. Hence aε5 − ε6a represents a syzygy in SyzK[G](w, w′) and is contained
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in U . In particular, there exists an element u ∈ A whose leading term is of the form
LTτ (u) = tε5 with t ∈ X∗. Since the elements (wi − w′i)ε5 are all contained in U ,
we may assume that the word t is in normal form with respect to W−→.

Now observe that the proof of Proposition 3.8 (and then of Corollary 4.7)
shows that one can consider the computation of SyzK[G](w,w′) ∩ SyzK[G](1,−1)
as the composition of the computation of the two individual syzygy moduls using
Theorem 3.7 with the computation of the intersection of two submodules using
Proposition 3.4. For all three Gröbner basis computations, we start with a system
of generators consisting of binomials. Hence also the computed Gröbner bases
consists of binomials. Consequently, the element u ∈ A found above is of the
form u = tε5 + bε5c or u = tε5 + b′ε6c

′. In the first case, the definition of τ
yields c = 1 and t >σ b. This contradicts the fact that we assumed t to be in
normal form with respect to W−→. Therefore only u = tε5 + b′ε6c

′ is possible.
Here u ∈ SyzK[G](1,−1) yields t = b′c′. Hence the element a = (b′)−1t satisfies
aε5−ε6a = (b′)−1u ∈ SyzK[G](w,w′). Thus the word a ∈ X∗ represents the desired
conjugator.

Let us recall that the computation of the Gröbner basis necessary in step (2) is
an enumerating procedure. After a new Gröbner basis element has been found and
fully interreduced, we can check whether it has the shape required by step (3). Since
we assume that w and w′ are conjugates, a suitable element u will be discovered
eventually, i.e. our instructions can be performed in such a manner that they define
an algorithm. ¤
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