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Abstract. The Buchberger-Möller algorithm is a well-known efficient tool for
computing the vanishing ideal of a finite set of points. If the coordinates of the
points are (imprecise) measured data, the resulting Gröbner basis is numeri-
cally unstable. In this paper we introduce a numerically stable Approximate
Vanishing Ideal (AVI) Algorithm which computes a set of polynomials that
almost vanish at the given points and almost form a border basis. Moreover,
we provide a modification of this algorithm which produces a Macaulay ba-
sis of an approximate vanishing ideal. We also generalize the Border Basis
Algorithm ([11]) to the approximate setting and study the approximate mem-
bership problem for zero-dimensional polynomial ideals. The algorithms are
then applied to actual industrial problems.

1. Introduction

Let us consider the following common situation in industrial applications. A
finite set of data points X = {p1, . . . , ps} ⊂ Rn , representing noisy measurements
collected in a field experiment, is available. Their coordinates will be suggestively
called here inputs. Furthermore, there exist one or more measured values at each
point that we give the suggestive name outputs. Our goal it to construct poly-
nomial functions of the coordinates of the points pi fitting the measured inputs
to the measured outputs. The polynomial model is then checked in a validation
experiment: the inputs from another set of measured data points, which have not
been used in the fitting process, are substituted as values for the corresponding
indeterminates in the constructed polynomials. Then the evaluations obtained in
this way are compared to the actual measured outputs.

This setting is markedly different from the settings for which the concept of
empirical polynomials was introduced by Stetter in his ground-breaking book [20].
Not anything like a specified polynomial is given here, nor is there structural in-
formation in the form of a fixed support available. For the same reason, also the
theory of pseudozero sets, as for instance laid out in [9] or [20] does not apply to
the present problem.

Since the polynomial ring R[x1, . . . , xn] is an infinite dimensional R -vector space,
this precludes many traditional methods of numerical linear algebra. Furthermore,
there exist strong incentives to use algebraic structures such as polynomial ideals
for modelling real-life applications. For instance, the output of such symbolic-
numerical computations may be used as input for further symbolic treatment. In
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this way one can retrieve algebraic structures and invariants (e.g. syzygies) hidden
in the input data which are not accessible via purely numerical methods.

For computing the vanishing ideal of a finite set of points, the Buchberger-Möller
Algorithm (BM-Algorithm) was introduced in [2] and studied further in a number
of papers (see for instance [15] and [1]). In the empirical setting described above,
the exact vanishing ideal it computes does not yield polynomials to which a physical
meaning can be attached because they ignore the inexact nature of the data. For
instance, it computes polynomials vanishing exactly at the given points, but there
could be polynomials passing almost through the points as in the following picture.

Figure 1. passing close vs. going through

Thus we should require merely that the polynomials vanish approximately at the
points, i.e. that |f(p)| < ε for some number ε > 0 which we shall call the threshold
number. Furthermore, since the property of having small evaluations at the points
of X is not preserved under multiplication by scalars, we require this property only
for unitary polynomials, i.e. for polynomials whose coefficient vector has Euclidean
norm 1.

Altogether, combining the wish to generalize the notion of vanishing ideal of a
set of points to the empirical setting and the need to prevent the problems we just
discussed, we arrive at the following definition.

Definition 1.1. Let X = {p1, . . . , ps} be a finite set of (empirical) points in Rn ,
and let P = R[x1, . . . , xn] .

(1) The R-linear map eval : P −→ Rs defined by eval(f) = (f(p1), . . . , f(ps))
is called the evaluation map associated to X .

(2) The ideal IX = ker(eval) ⊆ P is called the vanishing ideal of X .
(3) Given ε > 0, an ideal J ⊆ P is called an ε-approximate vanishing ideal

of X if there exists a system of generators G of J such that ‖ eval(g)‖ < ε
and ‖g‖ = 1 for all g ∈ G . Here ‖g‖ denotes the Euclidean norm of the
coefficient vector of g .

Algebraically, an approximate vanishing ideal is almost always the unit ideal.
What we are really looking for are systems of generators having a particular struc-
ture which ensures that close by there exists a system of generators of an actual
vanishing ideal. For reasons which will become apparent later, this structure is
described by the notion of approximate border bases (cf. Definition 3.1).

In Section 2, we start by recalling some of the main properties of the singular
value decomposition (SVD) of a matrix of real numbers that are used later on.
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Moreover, we include a definition of the ε-approximate kernel of a real matrix and
an interpretation in terms of a total least squares problem.

Then, in Section 3, the first task addressed in this paper is how to compute
an approximate vanishing ideal of a set of points. We use the SVD to adapt the
BM-Algorithm to the approximate setting. The resulting algorithm will be called
the Approximate Vanishing Ideal Algorithm (AVI-Algorithm). It yields an order
ideal O of terms whose evaluation vectors have no small relation vectors, as well
as an approximate O -border basis.

A small modification of the AVI-Algorithm 3.3 computes polynomials which
are most of the time close to being a Gröbner basis of an approximate vanishing
ideal. However, as explained in Remark 3.8, due to the numerical instability of
the concept of Gröbner basis, this cannot be certified in all situations. Another
version of the AVI-Algorithm computes Macaulay bases of approximate vanishing
ideals (see Corollary 3.12). A particular feature of the AVI-Algorithm is that it
frequently produces the vanishing ideal of a smaller set of points. This is partly
due to the fact that close-by points should be regarded as approximately equal and
will be identified by the algorithm (see Examples 3.13 and 3.14).

In Section 4 we consider a related problem: given polynomials f1, . . . , fs ∈ P =
R[x1, . . . , xn] which “almost” define a zero-dimensional polynomial ideal (i.e. there
exist close-by polynomials which define an ideal I ⊂ P such that dimR(P/I) >
0), find a border basis of the smallest nearby ideal I . The idea to solve this
task is similar to the idea underlying the AVI-Algorithm: use the SVD to make
the usual border basis algorithm (see [11], Props. 18 and 21) numerically more
stable. The precise formulation of the approximate border basis algorithm is given
in Theorem 4.10 and some examples and timings are provided in Section 6.

Next we study the approximate ideal membership problem in Section 5. For
approximate vanishing ideals, the decision problem “Is f approximately in I ?”
can be easily solved using the evaluation vector of f . For general zero-dimensional
ideals, we use a completely reduced, orthogonal Macaulay basis to decide approxi-
mate membership by checking the length of the orthogonal projection to the ideal.
Moreover, the division by this completely reduced, orthogonal Macaulay basis yields
representations which enable us to solve the explicit membership problem for ap-
proximate ideals.

In Section 6 we provide some timings and study the behavior of the implementa-
tions of our algorithms for some real-world data sets. We also show the importance
of appropriate data scaling. Finally, in Section 7, we explain how one can apply
the results to some concrete industrial problems.

Before we begin with the main part of the paper, we would like to state a few
restrictions we have made. We hasten to add that these restrictions do not obstruct
in any way the real-life applicability of our results. One assumption has been tacitly
made already: We assume that the relation between inputs and outputs mentioned
above is an algebraic rather than a differential equation. A second assumption is
that, again with reference to the setting sketched above, we restrict ourselves to
the situation where we consider one output depending on several inputs. We plan
to address multi-input, multi-output situations in a future paper.

Furthermore, we would like to point out that the present paper reflects our on-
going research in this area. While in the process of finishing our preprint, the
paper [5] by Fassino was brought to our attention, in which the mathematical
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problem examined in our Section 3 is addressed, albeit using methods that are
clearly different from ours.

Unless explicitly stated otherwise, we use the definitions and notations intro-
duced in [12] and [13]. The base field will be the field of real numbers throughout
this paper. We leave it to the interested readers to write down the appropriate
versions of our results over the field of complex numbers.

2. The Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix of real numbers is a ubiq-
uitous tool in numerical linear algebra. Since we are going to use it heavily (as
well as certain variants of it), we recall it here. For further details, see [6]. Unless
specified explicitly, we shall always equip Rm with the standard scalar product and
the Euclidean norm. With a slight abuse of notation, by the kernel of a matrix we
shall mean the kernel of its associated linear map.

Theorem 2.1 (The Singular Value Decomposition).
Let A ∈ Matm,n(R) .

(1) There are orthogonal matrices U ∈ Matm,m(R) and V ∈ Matn,n(R) and a

matrix S ∈ Matm,n(R) of the form S =
(D 0

0 0

)
such that

A = U · S · Vtr = U ·
(D 0

0 0

)
· Vtr

where D = diag(s1, . . . , sr) is a diagonal matrix.
(2) In this decomposition, it is possible to achieve s1 ≥ s2 ≥ · · · ≥ sr > 0 . The

numbers s1, . . . , sr depend only on A and are called the singular values
of A .

(3) The number r is the rank of A .
(4) The matrices U and V have the following interpretation:

first r columns of U ≡ ONB of the column space of A
last m− r columns of U ≡ ONB of the kernel of Atr

first r columns of V ≡ ONB of the row space of A
≡ ONB of the column space of Atr

last n− r columns of V ≡ ONB of the kernel of A
Proof. See for instance [6], Sections 2.5.3 and 2.6.1. ¤

The SVD of a real matrix allows us to define and compute its approximate kernel.

Corollary 2.2. Let A ∈ Matm,n(R) , and let ε > 0 be given. Let k ∈ {1, . . . , r}
be chosen such that sk > ε ≥ sk+1 . Form the matrix Ã = U S̃ Vtr by setting
sk+1 = · · · = sr = 0 in S .

(1) We have min{‖A − B‖ : rank(B) ≤ k} = ‖A − Ã‖ = sk+1 . (Here ‖ · · · ‖
denotes the 2-operator norm of a matrix.)

(2) The vector subspace apker(A, ε) = ker(Ã) is the largest dimensional kernel
of a matrix whose Euclidean distance from A is at most ε . It is called the
ε-approximate kernel of A .
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(3) The last n − k columns vk+1, . . . , vn of V are an ONB of apker(A, ε) .
They satisfy ‖Avi‖ < ε .

Proof. See [6], Section 2.5.4 and the theorem. For (3), observe that ‖Avi‖ =
‖(A− Ã)vi‖ ≤ ‖A − Ã‖ < ε . ¤

The number ε > 0 in this corollary will be called the threshold number. For
matrices arising from measured data, there is sometimes a large gap in the sequence
of singular values (s1, . . . , sr), so that there exists a natural choice for the threshold
number. The matrix Ã is also called the ε-truncation of the SVD of A and k is
sometimes referred to as the numerical rank of A . The approximate kernel of a
matrix can be reinterpreted as follows.

TLS Interpretation of the Approximate Kernel. The following explanations
follow those in [7] and reinterpret the results in our context. Rather than using the
classical least squares methods, our setting leads us to consider total least squares
(TLS) problems. For instance, suppose we are given a finite set of input data
points X = {p1, . . . , ps} ⊂ Rn and measured output values q1, . . . , qs ∈ R . If we
want to interpolate these data linearly, we are looking for an n-dimensional affine
subspace ĉ⊥ = (c1, . . . , cn, 1)⊥ that is nearest to the data points, i.e. that minimizes
J(c) =

∑s
i=1(z

tr
i · ĉ)2 where zi = (pi,−qi). Since ztr

i · ĉ/‖ĉ‖ is the distance from zi

to the subspace, we want to minimize r 7→ ‖(z1, . . . , zs)tr · r‖2 subject to ‖r‖2 = 1.
In other words, the total least-squares solution minimizes the Euclidean distance of
an affine hyperspace to a given set of input/output points, and not only the output
components of the distances. In our applications this means that we allow errors
in all components rather than only the right hand side of the fitting problem.

Now let us connect these TLS approximations to the interpolation problem in
higher degrees and to the approximate kernel of a matrix. Let A ∈ Matm,n(R)
and i ∈ {1, . . . , n} . We use the choice of this component index i to dehomog-
enize the linear system of equations A · x = 0. Let A′ be the matrix obtained
by deleting the ith column of A , and let ai be the ith column of A . The TLS
solution of the (usually over-determined) linear system A′ ·x = −ai minimizes the
sum of the Euclidean distances of the column vectors of A′ to an affine subspace
(c1, . . . , ĉi, . . . , cn)⊥ . If it exists, it corresponds to the kernel of the minimizer of
the Frobenius norm ‖A−B‖2 subject to rank(B) < n (see [7], Sec. 5). This mini-
mization problem is solved by the SVD, and the right singular vector corresponding
to the smallest singular value of A is the required solution of the ith TLS problem
provided its ith component is not zero.

If we use a threshold number ε > 0 and compute the ε-truncation Ã of the
SVD of A , we are looking for as many solutions to the TLS-problems A′ ·x = ai as
possible for which there exists a solvable linear system B′ ·x = bi which is “nearest”
to the system A′ · x = ai and not farther away than specified by the threshold
number. This is exactly the way we will use the SVD in Sections 3 and 4. Note
that, compared to the classical least squares solutions, our SVD approach allows
implicitly that all columns of A (which will be the evaluation vectors of terms at
the input data points) contain “noise”, not just the columns corresponding to the
right hand sides of the dehomogenizations (which will correspond to the evaluation
vectors of the leading terms of the normalized border basis polynomials). We will
come back to this point later on.
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3. Approximate Vanishing Ideals of Points

In this paper we will use the polynomial ring P = R[x1, . . . , xn] over the field of
real numbers R . Moreover, we always assume that a positive real number ε > 0 is
given. We will call it the threshold number. In the approximate world it is unlikely
that a polynomial vanishes exactly at a given point. We shall say that a polynomial
f ∈ P vanishes ε-approximately at a point p ∈ Rn if |f(p)| < ε .

Of course, if the coefficients of f ∈ P are very small, it is always true that f
vanishes ε-approximately at p . Hence we need to measure the size of a polynomial
by the Euclidean norm of its coefficient vector. If this norm is one, the polynomial
will be said to be unitary. Dividing a polynomial or a vector by its norm will be
called normalizing it. Thus we are most interested in unitary polynomials vanishing
at a given point.

Now let X = {p1, . . . , ps} ⊆ Rn be a finite set of points. We can evaluate
the polynomials at the points of X . This defines the evaluation homomorphism
evalX : X −→ Rs given by f 7−→ (f(p1), . . . , f(ps)). We will say that f ∈ P
vanishes ε-approximately on X if ‖ evalX(f)‖ < ε .

Since it is central to this section, let us recall the following notion (see Defi-
nition 1.1): An ideal I ⊆ P is called an ε-approximate vanishing ideal of X if
there exist unitary polynomials f1, . . . , fm ∈ P such that ‖ evalX(fi)‖ < ε for
i = 1, . . . , m and such that I = 〈f1, . . . , fm〉 . In other words, we are requiring
that I is generated by unitary polynomials which vanish ε-approximately on X .

Our goal is to present an algorithm which uses the SVD to compute an ε-
approximate vanishing ideal of a finite set of points X = {p1, . . . , ps} ⊂ Rn given
by their (approximate) coordinates. To this end, we modify the usual Buchberger-
Möller algorithm (see [2]) in several ways: we process all terms of some degree
simultaneously, we remove “small” polynomials in the vanishing ideal, and we com-
pute an approximate border bases (rather than a Gröbner basis).

For a definition and the basic properties of border bases, see [13], Section 6.4.
The following discussion centers around the concept of an ε-approximate border
basis which is defined as follows.

Definition 3.1. Let O = {t1, . . . , tµ} ⊆ Tn be an order ideal of terms, let ∂O =
{b1, . . . , bν} be its border, and let G = {g1, . . . , gν} be an O -border prebasis of
the ideal I = 〈g1, . . . , gν〉 in P . Recall that this means that gj is of the form
gj = bj −

∑µ
i=1 cijti with cij ∈ R .

For every pair (i, j) such that bi, bj are neighbors in ∂O , we compute the normal
remainder S′ij = NRO,G(Sij) of the S-polynomial of gi and gj with respect to G .
We say that G is an ε-approximate border basis of the ideal I = 〈G〉 if we have
‖Sij‖ < ε for all such pairs (i, j).

One further ingredient of our theorem is a stabilized version of Gaußian reduc-
tion. The computation of reduced row echelon forms is necessary, since we need to
know all possible leading terms contained in a certain vector space of polynomials,
and we have to make sure that we only accept leading terms whose corresponding
leading coefficient is large enough. The following method for finding the most suit-
able pivot elements is fashioned after the computation of the QR decomposition.
Its numerical adequacy follows from the work of Shirayanagi and Sweedler (cf. [19]).
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Lemma 3.2 (Stabilized Reduced Row Echelon Form).
Let A ∈ Matm,n(R) and τ > 0 be given. Let a1, . . . , an be the columns of A .
Consider the following instructions.

(1) Let λ1 = ‖a1‖ . If λ1 < τ , let R = (0, . . . , 0) ∈ Matm,1(R) . Otherwise, let
Q = ((1/λ1) a1) ∈ Matm,1(R) and R = (λ1, 0, . . . , 0) ∈ Matm,1(R) .

(2) For i = 2, . . . , n , compute qi = ai −
∑i−1

j=1〈ai, qj〉 qj and λi = ‖qi‖ . If
λi < τ , append a zero column to R . Otherwise, append the column (1/λi) qi

to Q and the column (λi〈a1, q1〉, . . . , λi〈ai−1, qi−1〉, λi, 0, . . . , 0) to R .
(3) Starting with the last row and working upwards, use the first non-zero entry

of each row of R to clean out the non-zero entries above it.
(4) For i = 1, . . . , m , compute the norm %i of the i-th row of R . If %i < τ ,

set this row to zero. Otherwise, divide this row by %i . Then return the
matrix R .

This is an algorithm which computes a matrix R in reduced row echelon form.
The row space of R is contained in the row space of the matrix A which is obtained
from A by setting the columns whose norm is less than τ to zero. Here the pivot
elements of R are not 1, but its rows are unitary vectors.

Furthermore, if the rows of A are unitary and mutually orthogonal, the row
vectors of R differ by less than τ m

√
n from unitary vectors in the row space

of A .

Proof. The explanation of this algorithm is straightforward: the matrix Q contains
an orthonormal basis of the column space of the matrix A which is obtained from A
by removing the columns whose norm is less than τ . The columns of the matrix R ,
defined to be the matrix R after step (2), contain the coordinates of the columns
of A in this orthonormal basis. Since we have R = Qtr A , the row spaces of R
and A agree. The row space of R is contained in that of R .

It remains to prove the last claim. A row v of R can be written as a linear
combination v = c1w1 + · · ·+ cmwm of the rows wi of R , where ci ∈ R . Further-
more, for i = 1, . . . , m , we use R = Qtr A to write wi = qi1u1 + · · ·+ qimum where
u1, . . . , um are the rows of A and qij ∈ K . Now each row uj differs from the
corresponding row rj of A by at most n entries which have been set to zero, each
of which has an absolute value smaller than τ . Hence we have ‖uj − rj‖ < τ

√
n .

If we let w̃i = qi1r1 + · · ·+ qimrm and ṽ = c1w̃1 + · · ·+ cmw̃m , then ‖v − ṽ‖ ≤
‖∑m

i,j=1 ciqij(uj− rj)‖ ≤ τ
√

n
∑m

j=1 ‖
∑m

i=1 ciqij‖ ≤ τ m
√

n since Q is orthogonal
and ‖v‖ = 1. From this the claim follows. ¤

It is clear that the procedure in this lemma can be stabilized even further by
using the modified Gram-Schmidt method, Givens or Householder transformations.
Moreover, the given error estimates are quite crude and could be refined. Neverthe-
less, the stated simple version of the lemma suffices for the following main result of
this section and does not deviate the reader’s attention from the main algorithm.

Before plunging into it, let us insert one more explanation. By scaling the coordi-
nates of the points of X appropriately, we may assume that they are in the interval
[−1, 1]. This assumption not only makes it easier to formulate error estimates for
our algorithm, it also enhances the numerical stability of the algorithm. This will
become evident in Section 7.
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Theorem 3.3 (The Approximate Vanishing Ideal Algorithm (AVI-Algorithm)).
Let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ Rn , let P = R[x1, . . . , xn] , let eval : P −→ Rs

be the associated evaluation map eval(f) = (f(p1), . . . , f(ps)) , and let ε > τ > 0 be
small positive numbers. Moreover, we choose a degree compatible term ordering σ .
Consider the following sequence of instructions.

A1 Start with lists G = ∅ , O = [1] , a matrix M = (1, . . . , 1)tr ∈ Mats,1(R) ,
and d = 0 .

A2 Increase d by one and let L be the list of all terms of degree d in ∂O ,
ordered decreasingly w.r.t. σ . If L = ∅ , return the pair (G,O) and stop.
Otherwise, let L = (t1, . . . , t`) .

A3 Let m be the number of columns of M . Form the matrix

A = (eval(t1), . . . , eval(t`),M) ∈ Mats,`+m(R).

Using its SVD, calculate a matrix B whose column vectors are an ONB of
the approximate kernel apker(A, ε) .

A4 Using the lemma, compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix C = (cij) ∈ Matk,`+m(R)
such that cij = 0 for j < ν(i) . Here ν(i) denotes the column index of the
pivot element in the ith row of C .

A5 For all j ∈ {1, . . . , `} such that there exists an i ∈ {1, . . . , k} with ν(i) = j
(i.e. for the column indices of the pivot elements), append the polynomial

cijtj +
∑̀

j′=j+1

cij′tj′ +
`+m∑

j′=`+1

cij′uj′

to the list G , where uj′ is the (j′ − `)th element of O .
A6 For all j = `, `− 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O and append the
column eval(tj) as a new first column to M .

A7 Using the SVD of M , calculate a matrix B whose column vectors are an
ONB of apker(M, ε) .

A8 Repeat steps A4 – A7 until B is empty. Then continue with step A2.
This is an algorithm which computes a pair (G,O) of sets G = {g1, . . . , gν} and
O = {t1, . . . , tµ} with the following properties:

(a) The set G consists of unitary polynomials which generate a δ -approximate
vanishing ideal of X , where δ = ε

√
ν + τν(µ + ν) .

(b) The set O = {t1, . . . , tµ} contains an order ideal of terms such that there
is no unitary polynomial in 〈O〉K which vanishes ε-approximately on X .

(c) The set G̃ = {(1/ LCσ(g)) g | g ∈ G} is an O -border prebasis.
(d) The set G̃ is an η -approximate border basis for η = 2δ + 2νδ2/γε +

2νδ
√

s/ε . Here γ denotes the smallest absolute value of the border term
coefficient of one the polynomials gi .

Proof. First we prove finiteness. When a new degree is started in step A2, the
matrix M has m = #O columns where O is the current list of terms. In step A6
we enlarge M by new first columns which are linearly independent of the other
columns. Clearly, this can happen only finitely many times, and only finitely many
terms are appended to O . In step A5 we construct new elements of G which have
leading terms in ∂O . Therefore also this can happen only finitely many times.
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Eventually we arrive at a situation where all new columns eval(ti) of A in step A3
would lead to a contradiction by yielding either a new element of G or a new
column of M . Thus we must eventually get L = ∅ and the algorithm stops.

Next we show (a). Let g ∈ G . By the construction of the stabilized reduced row
echelon form, the coefficient vector c of g is unitary. The vector c differs by less
than τ m

√
n from a unitary vector c̃ in apker(A). Moreover, the columns of A are

the evaluation vectors of terms which are ordered decreasingly w.r.t. σ . Note that
c̃ is a unitary vector in the column space of B . Let g̃ =

∑`+m
i=1 c̃iti be its associated

polynomial. We write c̃ = a1b1 + · · ·+akbk where aj ∈ R and bj is the jth column
of B . Then we have ‖ eval(g̃)‖ = ‖∑k

j=1 aj eval(
∑`+m

i=1 bijti)‖ ≤
∑k

j=1 |aj | ε ≤
ε
√

k
∑k

j=1 |aj |2 = ε
√

k . To get a bound for k , we can use k ≤ #∂O = ν . By
the lemma, we have ‖g − g̃‖ < τν

√
µ + ν if we use ν as a (crude) upper bound

for the number of rows of Btr and µ + ν for the number of its columns. Since
X ⊂ [−1, 1]n , the norm of the evaluation vector of a term is ≤ 1. The number of
terms in the support of g− g̃ is bounded by µ+ν . Hence we obtain ‖ eval(g− g̃)‖ ≤
‖g − g̃‖√µ + ν < τµ(µ + ν).

To prove (b), we observe that the columns of the final matrix M are precisely
the evaluation vectors of the terms in O . After the loop in steps A4 – A8, we
have apker(M) = {0} . Hence no unitary polynomial in 〈O〉K has an evaluation
vector which is smaller than ε . Now we show that O is an order ideal of terms.
Suppose that t ∈ O and xit ∈ ∂O is put into O in step A6. We have to show
that all divisors of xit are in O . If not, there exists an indeterminate xj such that
t = xjt

′ and xit
′ = LTσ(g) for some g ∈ G . Then xit = LTσ(xjg) is the leading

term of a unitary polynomial of degree d whose evaluation vector is less than ε .
But the loop in A4 – A8 makes sure that all such leading terms are detected, in
contradiction to xit ∈ O . Hence all divisors xit

′ of xit are in O .
To prove (c), we use the fact that C is a reduced row echelon form. By the

way G and O are updated in steps A5 and A6, the polynomials g ∈ G satisfy
Supp(g−LMσ(g)) ⊆ O . By the way the list L is updated in A2, we have LTσ(g) ∈
∂O .

Finally we show (d). We write gi = γibi + hi where γi ∈ R is the border term
coefficient, bi ∈ ∂O and Supp(hi) ⊆ O . Then g̃i = (1/γi) gi = bi + h̃i is the
corresponding border basis element. Letting ω be the smallest singular value of
the evaluation matrix M of O , we have ‖ eval(h̃i)‖ = ‖M · vi‖ ≥ ω‖vi‖ = ω‖h̃i‖
where v denotes the vector of coefficients of h̃i . This yields ω‖h̃i‖ ≤ ‖ eval(gi)‖+
‖ eval(bi)‖ ≤ δ/|γi|+

√
s . Hence every coefficient cij of h̃i satisfies cij ≤ δ/(ωγ) +√

s/ω < δ/(εγ) +
√

s/ε .
Given a neighbor pair (i, j), the S-polynomial Sij = xkg̃i−x`g̃j resp. Sij = g̃i−

xkg̃j has a normal remainder of the form S′ij = NRO,G̃(Sij) = xkg̃i−x`g̃j−
∑

ν cν g̃ν

resp. S′ij = g̃i−xkg̃j−
∑

ν cν g̃ν where the cν ∈ R are some of the coefficients of the
polynomials h̃i . Thus we get ‖ eval(S′ij)‖ < 2δ+

∑
ν(δ/(εγ)+

√
s/ε)‖ eval(g̃ν)‖ ≤ η ,

as claimed. ¤

Let us collect some remarks about this theorem and its proof.

Remark 3.4. The assumption that the coordinates of the points of X are in the
interval [−1, 1] is not necessary for the correctness of the AVI-Algorithm. It was
only used to prove the stated bounds for δ and η . However, a suitable amount
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of data scaling is essential for the performance and the numerical behavior of this
algorithm, as we shall see in the last part of Section 6.

Remark 3.5. In the theorem, the stated bounds for δ and η are rather crude.
Using a more refined analysis, they could be improved significantly. In practical
examples, the behavior of the computed approximate border bases is much better
than predicted by these bounds. In all cases we explored, the evaluations of the
polynomials gi were smaller than ε and the evaluations of the normal remainders of
the S-polynomials were of the same order of magnitude as ε . Clearly, if we choose
ε = 0, the algorithm computes an exact border basis.

Remark 3.6. The loop started in step A7 of the theorem is most of the time un-
necessary. It has been included to deal with an unusual behavior of the approximate
kernel which occurs sometimes: if the matrix A satisfies dimR(apker(A, ε)) = k
and one removes the k columns at the pivot positions of an ONB of the approximate
kernel, the remaining matrix Ã may still have apker(Ã, ε) 6= {0} .

In a practical implementation of the algorithm, it is more efficient to deal with
this anomaly in the following way: ignore step A7. Instead, if in the next degree
more than ` non-zero rows of C are found, some of whose pivot positions correspond
to elements of O , remove those elements of O and repeat the computation for
the preceding degree. In this way, quite a few unnecessary SVD computations
can be saved, but the formulation and the analysis of the algorithm become more
cumbersome.

Remark 3.7. The AVI-Algorithm can be optimized in a variety of ways. For
instance, it is not necessary that the “blocks” of terms used in the loop A2 –
A8 are all the terms of degree d in ∂O . Especially in higher degrees it may be
useful to process “blocks” of consecutive terms for which the SVD can be computed
efficiently.

Remark 3.8. By changing the construction of the list L in step A2 appropriately,
the AVI-Algorithm can be used to compute an “approximate Gröbner basis” of an
approximate vanishing ideal of X . More precisely, the list L should be defined
as all terms in Tn

d which are not contained in 〈LTσ(G)〉 . Unfortunately, there is
no guarantee that the computed polynomials are close to an actual Gröbner basis.
The computation of the normal remainders of the S-polynomials requires a number
of reductions steps which can be very large. Therefore no bound for the size of
the evaluation vectors of these normal remainders can be given. In many practical
examples, however, the Gröbner basis version works fine.

Remark 3.9. The approximate border basis computed by the AVI-Algorithm is
“close” to an actual border basis in the sense that its coefficients define a point close
to the border basis scheme (see [14]). The task of finding an actual exact border
basis close to it could be solved by computing the eigenvectors of the generic mul-
tiplication matrix corresponding to G , reading the approximate points from them,
and computing their (exact) vanishing ideal. This method is rather inefficient. An-
other possibility is to use the Approximate Border Basis Algorithm 4.10. However,
for many of the tasks studied below, the knowledge of an approximate border basis
is sufficient.

Remark 3.10. In the theorem, the choice of a term ordering σ could be replaced
by a suitable choice function. This function would have to have the property
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that it guarantees that the computed set of terms O is an order ideal, or else we
would have to make sure that the order ideal property is retained by the choice of
the pivot elements in the computation of the stable reduced row echelon form in
Lemma 3.2. We leave it to the interested reader to work out explicit versions of
this generalization of the AVI-Algorithm.

If the bound δ of the theorem yields insufficient results, we can use the following
optimization.

Threshold control. In Algorithm 3.3 we use a fixed ε > 0 for the singular value
truncation. In many cases this suffices to get good results, but in some cases it
makes sense to vary ε . The main idea behind this is that, after using a specific ε
for the singular value truncation, one checks the quality of the evaluation vectors
of the relations in G . If the quality is below a given bound, the constant ε is
iteratively adapted until the resulting relations meet the quality requirements. This
principle will be called threshold control. Using threshold control for Algorithm 3.3
may involve additional iterations and hence slow the algorithm down a bit. On
the other hand, it will result in a smoother evaluation behavior of the calculated
relations. Threshold control is achieved by modifying the theorem as follows.

Corollary 3.11 (AVI Algorithm with Threshold Control).
In the setting of the theorem, let ξ > 0 the maximal tolerable size of the evaluation
vectors of the calculated Gröbner basis polynomials, and let N > 1 (for instance
N = 10 .). Replace steps A5 and A8 by the following steps A5’ and A8’.

A5’ For all j ∈ {1, . . . , `} such that there exists a i ∈ {1, . . . , k} with ν(i) = j
(i.e. for the column indices of the pivot elements), form the polynomials

gj = cijtj +
∑̀

j′=j+1

cij′tj′ +
`+m∑

j′=`+1

cij′uj′

where uj′ is the (j′− `)th element of O . Calculate maxj{‖ eval(gj)‖} and
check whether it is < ξ . If this is the case, append the polynomials gj

to G . Otherwise, replace ε by ε/N , replace τ by τ/N , and continue with
step A3.

A8’ Repeat steps A4 – A7 until B is empty. Then reset ε and τ to their
original values and continue with step A2.

The resulting algorithm computes a pair (G,O) having the properties stated in the
theorem. Moreover, the polynomials gj ∈ G satisfy ‖ eval(gj)‖ < ξ .

Proof. The fact that this procedure terminates follows from the observation that
the size of the computed order ideal O is bounded by its size in the case ε = τ = 0,
in which it is precisely the number of points in X . ¤

In Section 6 we present some computational results for the calculation of approx-
imate border bases of ε-approximate vanishing ideals. In particular, it turns out
that approximate border bases are indeed numerically more stable than Gröbner
bases in the examples considered there.

Macaulay Bases. The AVI-Algorithm can be adapted to calculate a Macaulay
basis (also called an H-basis) of an approximate vanishing ideal of a set of points.
The definition and fundamental properties of Macaulay bases are explained in [13],
Sections 4.2 and 4.3. In Section 5 we shall use these bases to study the approximate
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membership problem for zero-dimensional polynomial ideals. Macaulay bases were
also used by H.M. Möller and T. Sauer to address numerical problems associated
with multivariate interpolation in [16] and [17].

In some sense, since the AVI-Algorithm 3.3 calculates an approximate Oσ(I)-
border basis and σ is a degree compatible term ordering, we have already found
an approximate Macaulay basis for an approximate vanishing ideal of X by [13],
Cor. 4.2.16. However, this is not the kind of Macaulay basis we are really interested
in. We would prefer an almost orthogonal Macaulay basis with good numerical
properties. Here “almost orthogonal” refers to a Macaulay basis for which the
orthogonality conditions of [17], Thm. 6.4 are satisfied up to an error whose size
is not larger than the given threshold number (see also Definition 5.1). If one
completely reduces such a set of polynomials, the result does not depend on the
choice of the term ordering σ (cf. [17], 6.5), so that σ is merely a method to
perform certain choices during the course of the algorithm. In order to find an
almost orthogonal Macaulay basis, we modify Algorithm 3.3 as follows.

Corollary 3.12 (Macaulay Bases for Approximate Vanishing Ideals).
In the setting of the theorem, consider the following sequence of instructions.

M1 Start with lists G = ∅ , H = ∅ , O = (1) , Q = (1) , a matrix M =
(1, . . . , 1)tr ∈ Mats,1(R) , and d = 0 .

M2 Increase d by one and let L = (t1, . . . , t`) be the list of all terms of degree d
which are not contained in ∂O , ordered decreasingly w.r.t. σ . If L = ∅ ,
continue with step M10.

M3 Let m be the number of columns of M . Form the matrix

A = (eval(t1), . . . , eval(t`),M) ∈ Mats,`+m(R).

Using its SVD, compute a matrix B whose column vectors are an ONB of
the approximate kernel apker(A, ε) .

M4 Using Lemma 3.2, compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix C = (cij) ∈ Matk,`+m(R)
such that cij = 0 for j < ν(i) . Here ν(i) denotes the column index of the
pivot element in the ith row of C . Moreover, let B = (b̄ij) be the matrix
obtained from Btr by setting all columns to zero whose norm is less than τ .

M5 For every i ∈ {1, . . . , k} , append the polynomial

hi =
∑̀

j′=1

b̄ij′tj′ +
`+m∑

j′=`+1

b̄ij′uj′

to the list H, where uj′ is the (j′ − `)th element of O .
M6 For all j ∈ {1, . . . , `} such that there exists an i ∈ {1, . . . , k} with ν(i) = j

(i.e. for the column indices of the pivot elements), append the polynomial

gj = cijtj +
∑̀

j′=j+1

cij′tj′ +
`+m∑

j′=`+1

cij′uj′

to the list G , where uj′ is the (j′ − `)th element of O .
M7 For all j = `, `− 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O and append the
column eval(tj) as a new first column to M .
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M8 Using the SVD of M , calculate a matrix B whose column vectors are an
ONB of apker(M, ε) .

M9 Repeat steps M4 – M8 until B is empty. Then continue with step M2.
M10 Let O = (t1, . . . , tµ) . Compute the SVD M = U S V tr of M . Put the

polynomials (q1, . . . , qµ) = (t1, . . . , tµ) · VS−1 into Q and return the pair
(H,Q) .

This is an algorithm which computes a pair (H,Q) . Here H is an almost or-
thogonal Macaulay basis of a δ -approximate vanishing ideal I of X where δ =
ε
√

ν + τν(µ + ν) . Moreover, the set Q is an ONB of a complement of I in P .

Proof. Since the computation of G and O proceeds as in the algorithm of the
theorem, it suffices to prove the claimed properties of H and Q . In each degree d ,
the new elements of H are obtained from the new elements of G by an invertible
linear transformation, namely the transformation corresponding to the inversion
of the reduction steps in Lemma 3.2. In particular, the degree forms of the new
elements of H generate the same vector space as the degree forms of the new
elements of G . Since G is a Macaulay basis, the set H is therefore a Macaulay
basis, too. In each degree d , the new elements of H are almost orthogonal to
each other, because the columns of B form an ONB of apker(A) and B is obtained
from B by setting some very small columns equal to zero. More precisely, the scalar
product of the coefficient vectors of any two elements of H is less than τ .

After the last degree d has been treated by the algorithm, the list O contains
a vector space basis of P/I where I is a δ -approximate vansihing ideal of X .
Hence O is a vector space basis of P/〈H〉 .

Considering the SVD of M̃ we see that M̃ Ṽ S̃−1 = (u1, . . . , uµ, 0, . . . , 0) where
the ui are the first µ columns of Ũ . Consequently, the evaluation vectors of the
elements of Q are an ONB of the column space of M̃ . Since the columns of M̃
are exactly the evaluation vectors of the elements of O , the claim follows. ¤

We would like to point out that the algorithm of this corollary can be optimized
substantially: if no column has to be set equal to zero in the computation of the
stabilized reduced row echelon form (as is normally the case), we can take the
matrix B instead of B in step M5. Similarly, if the columns we set equal to
zero are few and much smaller than τ , the polynomials derived from the columns
of B are a very good approximation to the polynomials constructed in step M5.
Notice also that this algorithm produces a particularly nice Macaulay basis of a
δ -approximate vanishing ideal I of X and an ONB of a complement of I in P .
These facts will be used to solve the approximate ideal membership problem for I
in Section 5.

The Case of the Vanishing Points. In Theorem 3.3 the computed order ideal O
satisfies the inequality #O ≤ s but not necessarily the equality.

Apparently the zero-set of an ideal I generated by a border basis close to G and
satisfying P/I = 〈O〉K may consist of less than s points. Is this really possible?
Yes, it is! Below we exhibit examples for this phenomenon. In fact, when working
with real-world data sets, it is quite likely to occur: if two measurements yield
approximately the same values, the corresponding data points will be very close to
each other. A polynomial of low degree will vanish approximately on one point if it
vanishes approximately on the other. Thus, from the point of view of constructing
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an approximate vanishing ideal, the points should be considered as one. And luckily
enough, this is exactly what the SVD achieves for us, without the need for any data
preprocessing. Let us have a look a simple example.

Example 3.13. (Two Points Become One)
Consider the set of two points X = {(0.25, 1), (0.3, 1)} which may be considered
close to each other. We apply the AVI-Algorithm 3.3. The evaluation matrix in
degree one is

A = (eval(x), eval(y), eval(1)) =
(

0.25 1 1
0.3 1 1

)

The singular values of this matrix are s1 = 1.9699 and s2 = 0.5214. Given ε =
0.6, the approximate kernel of A is 2-dimensional. Hence we find two linearly
independent linear forms passing through X (instead of a linear and a quadratic
polynomial). In other words, the corresponding approximate vanishing ideal I of X
satisfies dimR(P/I) = 1, i.e. it defines one point. The two points have become one!

Figure 2. Two close-by points become one “approximate” point

Here is a more complicated example of this phenomenon.

Example 3.14. (Nine Points Become Five)
Consider the set of nine points X = {(0.264, 0.001), (0.099, 0.302), (0.103, 0.298),
(0.203,−0.211), (0.198,−0.213), (−0.200, 0.209), (−0.198, 0.212), (−0.201, 0.214),
(−0.266,−0.002)} , some of which may be considered close to each other. We apply
the AVI-Algorithm 3.3 with σ = DegRevLex . The evaluation matrix in degree one
is


0.264 0.099 0.103 0.203 0.198 −0.2 −0.198 −0.201 −0.266
0.001 0.302 0.298 −0.211 −0.213 0.209 0.212 0.214 −0.002

1 1 1 1 1 1 1 1 1




tr

The singular values of this matrix are s1 = 3.012, s2 = 0.703, and s3 = 0.44.
(1) First, let us use ε = 0.05. Then no singular value truncation is necessary

in degree 1 and we set O = {1, x, y} . In degree 2 the evaluation matrix A
has singular values s1 = 3.018, s2 = 0.704, s3 = 0.450, s4 = 0.082,
s5 = 0.061, and s6 = 0.001. Therefore the singular value truncation sets
s6 = 0 and yields a new matrix Ã of rank 5. Then apker(A, ε) = ker(Ã)
corresponds to the polynomial g1 = 0.833x2− 0.01xy + 0.549y2 + 0.001x +
0.002y − 0.058. The order ideal becomes O = {1, x, y, xy, y2} .

This shows that the points of X lie ε-approximately on the ellipse
Z(g1) ≈ Z(301x2 + 198y2 − 21). When we proceed with degree 3, we
find that three polynomials g2, g3, g4 have to be added to the approximate
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border basis, but no element is appended to O , and the algorithm stops.
Altogether, we have computed an approximate border basis of an ideal of
five points which lie approximately on an ellipse.

(2) Now we redo the computation with ε = 0.0001. No singular value trun-
cation has to be performed in degree 1, 2, or 3. After finishing degree 2
we have O = {1, x, y, x2, xy, y2} . Then we find one polynomial in degree 3
of the ε-approximate vanishing ideal, namely g1 = −0.748x3 − 0.597x2y−
0.225xy2 +0.008y3−0.043x2−0.099xy−0.122y2 +0.052x+0.035y+0.002,
and four further polynomials in degree 4. The algorithm stops after de-
gree 4 and returns O = {1, x, y, x2, xy, y2, x2y, xy2, y3} . Thus the 0.0001-
approximate vanishing ideal corresponds nine points which are close to the
original points of X .

4. Approximate Border Basis Computation

Next we want to address the following problem: Suppose we are given “empirical”
polynomials f1, . . . , fr ∈ P = R[x1, . . . , xn] with r ≥ n . If r > n , the ideal
〈f1, . . . , fr〉 will probably be the unit ideal. However, we assume that “close by”
there exists a zero-dimensional ideal I ⊂ P with dimR(P/I) À 0. Our task is to
find I and to compute a border basis of I .

From Polynomials to Matrices. To begin with, let us suppose for a moment
that we have found a finite dimensional vector space of polynomials which “is close
to” a part of I≤d , the polynomials of degree ≤ d in I . As discussed above, in our
applications it makes sense to measure the size of a polynomial by the Euclidean
norm of its coefficient vector. Given a threshold number ε > 0, a polynomial
is called ε-small if the norm of its coefficient vector is less than ε . The ε-small
polynomials form an open neighborhood of the zero polynomial. Since a polynomial
ideal I 6= P contains only a small part of this neighborhood, we have to remove
from V as many ε-small polynomials as possible.

In order to do this, we represent a finite dimensional vector space of polynomials
by a matrix. Let V ⊂ P be a vector space, let f1, . . . , fr be a basis of V , and
let Supp(f1) ∪ · · · ∪ Supp(fr) = {t1, . . . , ts} . For i = 1, . . . , r , we write fi =
ai1t1 + · · ·+ aists with aij ∈ R . Then V can be represented by the matrix

A =




a11 · · · a1s

...
...

ar1 · · · ars




Now we may use the SVD of A to filter out some ε-small polynomials in V . In
the following sense, this does not change V very much.

Definition 4.1. Let V, W be two vector subspaces of P , and let δ > 0.
(1) A polynomial f ∈ P is called δ -close to V if there exists a polynomial

v ∈ V such that ‖f − v‖ < δ .
(2) We say that V is δ -close to W if every unitary polynomial in V is δ -close

to W .

Note that the relation expressing the fact that V is δ -close to W is not sym-
metric.
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Remark 4.2. [The ε-truncation of a vector space]
Let V be a finite dimensional vector space of polynomials with basis {f1, . . . , fr} ,
let A ∈ Matr,s(R) be a matrix representing V as above, and let ε > 0 be a given
threshold number.

First we compute the SVD of A and get A = U S Vtr as in Theorem 2.1. If we
now replace all singular values si < ε by zeroes, Corollary 2.2 says that the resulting
matrix Ã = U S̃ Vtr represents the polynomial vector space Vap of smallest rank
which is ε -close to V . The vector space Vap is called the ε-truncation of V .

Approximate Leading Terms. In the Border Basis Algorithm we need a vector
space basis V of V with pairwise different leading terms and a vector space basis
extension V ∪ W ′ with pairwise different leading terms. We want to find an ap-
proximate version of this special kind of basis extension. Given a finite dimensional
vector space of empirical polynomials V ⊂ P and threshold numbers ε, τ > 0, we
first replace V by Vap (using the threshold number ε). Let A = (aij) ∈ Matr,s(R)
be a matrix representing Vap . By choosing the ONB {f1, . . . , fr} of Vap provided
by the rows of the matrix V in the SVD, we may assume that r ≤ s and A = V1

where V1 consists of the first r rows of the orthogonal matrix V of size s× s .

Definition 4.3. Let τ > 0 be a given threshold number, and let σ be a degree
compatible term ordering.

(1) For a unitary polynomial f ∈ P , the maximal term t ∈ Supp(f) whose
coefficient has an absolute value > τ is called the τ -approximate leading
term of f with respect to σ and is denoted by LTap

σ,τ (f). The coefficient
of LTap

σ,τ (f) in f is called the τ -approximate leading coefficient of f and
is denoted by LCap

σ,τ (f).
(2) Let V ⊆ P be a finite dimensional vector subspace. The set

LTap
σ,τ (V ) = {LTap

σ,τ (f) | f ∈ V, ‖f‖ = 1}
is called the τ -approximate leading term set of V .

If the threshold number τ is small enough, every unitary polynomial in V has an
approximate leading term. However, it is easy to see that the set of approximate
leading terms of a unitary vector space basis of V may be strictly smaller than
LTap

σ,τ (V ). We would like to find a unitary vector space basis of V which has a
numerically well-behaved approximate leading term set in the sense that its leading
terms are exactly the approximate leading terms of the polynomials in V . For this
purpose we may have to modify V slightly, and we have to choose τ small enough.
The following example explains why.

Example 4.4. Let P = R[x, y] , let O = {1, x, y, xy} , and let the vector space
V = 〈0.6xy + 0.8, 0.6x + 0.8, 0.6y + 0.8〉 be represented by the matrix A =


0.6 0 0 0.8
0 0.6 0 0.8
0 0 0.6 0.8


 with respect to σ = DegRevLex . Then the polynomial

f = f̃/‖f̃‖ , where f̃ = 0.6xy + 0.6x + 0.6y + 1.8, is a unitary polynomial in V .
Since f ≈ 0.229xy + 0.229x + 0.229y + 0.306, the choice of τ = 0.25 would yield
LTap

σ,τ (f) = 1 and the given polynomials would not be a well-behaved approximate
leading term basis of V .

The following proposition specifies a measure for the maximal τ we can use.
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Proposition 4.5. Let A = (aij) ∈ Matm,n(R) be a matrix representing a list of
unitary polynomials (f1, . . . , fr) with respect to the list of terms O = (t1, . . . , ts) .
Suppose that A is in reduced row echelon form and that its pivot entries are
`1, . . . , `s . If we let c = maxi,j{|aij |/|`i|} and choose τ < (r + (s − r)r2c2)−1/2 ,
we have LTap

σ,τ (V ) = {LTap
σ,τ (f1), . . . , LTap

σ,τ (fr)} .
If this condition holds, we shall say that {f1, . . . , fr} is a τ -approximate leading

term basis of V .

Proof. Let f ∈ V be a unitary polynomial. We denote the set of column indices of
the pivot elements by J and choose f̃ = d1t1 + · · ·+ dsts ∈ R · f with dj ∈ R such
that max{|dj | | j ∈ J} = 1. We write f̃ = c1f1 + · · ·+ crfr with ci ∈ R . Then we
obtain

τ < (r + (s− r)c2r2)−1/2 ≤ (r + (s− r) c2 (
∑r

i=1|ci`i|)2)−1/2

since |dj | ≤ 1 for j ∈ J and ci`i is the coefficient of f̃ at the term corresponding
to the i -th pivot position. Moreover, for i = 1, . . . , r , we have |c`i| ≥ |aij | by the
definition of c , and hence

τ < (r + (s− r)(
∑r

i=1|cic`i|)2)−1/2

≤ (r +
∑

j /∈J(
∑r

i=1|ciaij |)2)−1/2

≤ (
∑s

j=1|d 2
j |)−1/2 ≤ 1/‖f̃‖

Consequently, the largest coefficient |dj |/‖f̃‖ of f at one of the approximate leading
terms is > τ , and LTap

σ,τ (f) is one of the approximate leading terms of the basis. ¤
The requirements for the size of τ imposed by this proposition are usually quite

modest, as the following remark shows.

Remark 4.6. In the setting of the preceding proposition, some values of the bound
for τ are given by the following table:

r s c maximal τ
3 10 100 1.26 · 10−3

10 50 100 1.58 · 10−4

20 100 100 5.59 · 10−5

30 1000 100 1.07 · 10−5

30 10000 100 3.34 · 10−6

Given an arbitrary matrix representing a vector space of polynomials, we can
compute an approximate leading term basis using Lemma 3.2.

Corollary 4.7 (Approximate Leading Term Bases).
Let A = (aij) ∈ Matr,s(R) be a matrix representing a vector space of polynomials
V = Vap with basis {f1, . . . , fr} . Recall that the columns of A are indexed by the
terms in Supp(V ) . Suppose there exists a degree compatible term ordering σ such
that larger terms w.r.t. σ correspond to columns having smaller column indices. We
bring A into reduced row echelon form using Lemma 3.2. The resulting matrix A′
represents a vector space of polynomials V ′ ⊂ P . Let f ′1, . . . , f

′
r′ ∈ V ′ be the

unitary vector space basis of V ′ corresponding to the rows of A′ . If τ < (r′ +
(s′ − r′)(r′)2c2)−1/2 , where c is defined as in the proposition, then every unitary
polynomial f ∈ V ′ satisfies

LTap
σ,τ (f) ∈ LTap

σ,τ (V ′) = {LTap
σ,τ (f ′1), . . . , LTap

σ (f ′r′)}
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Thus {f ′1, . . . , f ′r′} is a τ -approximate leading term basis of V ′ . Moreover, the
vector space V ′ is (s− r)τ -close to V .

Proof. The first claim follows immediately from the proposition. The second claim
follows from the observation that setting a coefficient of absolute value < τ to zero
in the algorithm of Lemma 3.2 changes the norm of a polynomial by less than τ . ¤

Notice that the bound for τ required in this corollary holds in most cases. The
rows of A′ are unitary polynomials and its pivot entries are larger than τ by con-
struction. This gives already a crude bound τ < 1/c and shows that the slightly
stronger bound of the corollary can only fail if we have a leading coefficient LCap

σ (f ′j)
which is just barely larger than the given threshold number. To simplify the fol-
lowing presentation, we shall assume that the bound for τ is always satisfied. Of
course, in an actual implementation a suitable check should be inserted.

The Approximate V + . Next we extend the procedure of passing from V to Vap

to the following construction. In the Border Basis Algorithm (cf. [11], Prop. 18)
the vector space V is repeatedly replaced by

V + = V + x1 V + · · ·+ xn V.

The approximate version of this construction works as follows.

Remark 4.8. [Approximate Leading Term Basis Extension]
Let V ⊂ P be a vector space of polynomials, let ε, τ > 0 be threshold numbers,
and let σ be a degree compatible term ordering.

(1) Compute the matrix A′ which represents an approximate leading term
basis {f ′1, . . . , f ′r} of V ′

ap as above. (Recall that columns of A′ having
lower column indices correspond to larger terms w.r.t. σ .)

(2) The representing matrix of (V ′
ap)+ = V ′

ap + x1V
′
ap + · · · + xnV ′

ap is of the

form
(Â
B
)

where Â is obtained by enlarging A′ by some zero columns cor-
responding to new terms in the support of (V ′

ap)+ . If necessary, resort the

columns of the matrix
(Â
B
)

such that columns having lower column indices
correspond to larger terms. Using the pivot entries in Â corresponding to
the approximate leading terms of the polynomials f ′i , clean out the corre-
sponding columns of B and get a matrix B′ .

(3) Delete the rows of B′ which are τ -approximately zero. Compute the ε-
truncation of the SVD of the resulting matrix and get B̃ = U ′ · S ′ · (V ′)tr .

(4) Let V ′1 be the first rows of V ′ which form an ONB of the row space of B̃
(see Theorem 2.1.4). Using Corollary 4.7, compute an approximate leading
term basis {f ′r+1, . . . , f

′
r′} of a vector space W ′ which is δ -close to the

vector space W represented by B̃ . (Here δ ≤ ((n+1)s−nr)τ can be used
as a crude estimate.)

Then the set {f ′1, . . . , f ′r′} is an approximate leading term basis of the vector
space V ′

ap ⊕W ′ ⊂ P which is δ′ -close to the vector space (V ′
ap)+ for δ′ = δ + ε .

Approximate Stable Spans. The last ingredient we need is an approximate
version of the computation of a stable span explained in [11], Prop. 13. We continue
to use two threshold numbers: ε for singular value truncations to remove small
polynomials and τ to prevent impossibly small leading coefficients.
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Proposition 4.9. Let f1, . . . , fr ∈ P be linearly independent unitary polyno-
mials, let V = 〈f1, . . . , fr〉R , let s = # Supp(V ) , let U = 〈Tn

≤d〉R for some
d ≥ max{deg(f1), . . . , deg(fr)} , let σ be a degree compatible term ordering, and
let ε, τ > 0 be threshold numbers. We perform the following steps.

(1) Using Corollary 4.7, compute a unitary basis V = {f ′1, . . . , f ′r′} of a vector
space V ′

ap which is an approximate leading term basis of V ′
ap .

(2) Using Remark 4.8, compute a unitary basis extension W ′ for V ′
ap ⊆ (V ′

ap)+

so that the elements of V ∪W ′ are an approximate leading term basis of a
vector space δ + ε-close to (V ′

ap)+ .
(3) Let W = {f ′r′+1, . . . , f

′
r′+%} = {p ∈ W ′ | deg(p) ≤ d} .

(4) If % > 0 then replace V with V ∪W , increase r′ by % , and go to step 2.
(5) Return V .

This is an algorithm which returns a set of unitary polynomials V = {f ′1, . . . , f ′r′}
which is an approximate leading term basis of Ṽ := 〈f ′1, . . . , f ′r′〉R , such that the
original polynomials f1, . . . , fr are ε + (s − r)τ -close to Ṽ , and such that Ṽ is
approximately U-stable, i.e. such that we have (Ṽ ′

ap)+ ∩ U = Ṽ .

Proof. The method of the proof of [11], Prop. 13 shows that the result is approxi-
mately U-stable. Let us check that the procedure is finite. This is due to the fact
that the basis extension performed in step 2 does not decrease the dimension of the
vector space Ṽ generated by V . Thus the dimensions of the vector spaces 〈V〉R
form a non-decreasing sequence and the bound r < dimR(U) implies that the loop
terminates.

The claim that the original polynomials are ε + (s− r)τ -close to the computed
vector space Ṽ follows from the facts that Vap is ε-close to V (see Corollary 2.2)
and V ′

ap is (s − r)τ -close to Vap (see Corollary 4.7). Clearly, extensions of this
vector space cannot increase the distances under consideration. ¤

ABBA and IABBA. Combining the preceding steps, we can formulate an ap-
proximate version of the Border Basis Algorithm [11], Prop. 18. Recall that, for a
polynomial ideal I , the order ideal of all terms not in LTσ(I) is denoted by Oσ(I).

Theorem 4.10 (The Approximate Border Basis Algorithm (ABBA)).
Let {f1, . . . , fr} ⊂ P = R[x1, . . . , xn] be a linearly independent set of r ≥ n unitary
polynomials, let V = 〈f1, . . . , fr〉R , let s = # Supp(V ) , let σ be a degree-compatible
term ordering, and let ε, τ > 0 . The following algorithm computes the Oσ(I)-border
basis {g1, . . . , gν} of an ideal I = 〈g1, . . . , gν〉 such that f1, . . . , fr are δ -close to I
for δ = ε + (s− r)τ .

B1 Let d = max{deg(fi) | 1 ≤ i ≤ r} and U = 〈Tn
≤d〉R .

B2 Using Corollary 4.7, compute a unitary basis V = {f ′1, . . . , f ′r′} of a vector
space V ′

ap which is an approximate leading term basis of V ′
ap .

B3 Using Remark 4.8, compute a unitary basis extension W ′ for V ′
ap ⊆ (V ′

ap)+

so that the elements of V ∪W ′ are an approximate leading term basis of a
vector space close to (V ′

ap)+ .
B4 Let W = {f ′r′+1, . . . , f

′
r′+%} = {p ∈ W ′ | deg(p) ≤ d} .

B5 If % > 0 then replace V by V ∪W , increase r′ by % , and go to B3.
B6 Let O = Tn

≤d \ {LTap
σ (f ′1) . . . LTap

σ (f ′r′)} .
B7 If ∂O * U then increase d by one, update U := 〈Tn

≤d〉R , and go to B3.
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B8 Apply the Final Reduction Algorithm (cf. [11], Prop. 17) and return its
result (g1, . . . , gν) .

Proof. Mutatis mutandis, it suffices to follow the proof of Prop. 18 in [11] and to
add the following observation: The set O of terms computed in step B6 is indeed
an order ideal.

Suppose a term t occurs as a leading term in the basis {f ′1, . . . , f ′r′} but only
with small coefficients, i.e. not as an approximate leading term. Then this term
will be put into O by step B6. Suppose that a divisor t′ of this term is of the form
t′ = LTap

σ,τ (f ′i) for some i . There exists a polynomial f ′i whose coefficient at t′

is larger than τ . If we multiply f ′i by the appropriate product of indeterminates,
the coefficient of t in the resulting polynomial is larger than τ . Thus, after several
extensions of V , the term t has to be the τ -approximate leading term of some
polynomial f ′j , in contradiction to our assumption.

The claim that the original polynomials are δ -close to the computed ideal I was
shown in Proposition 4.9. ¤

Notice that steps B2 –B5 are in essence the algorithm of the preceding propo-
sition. As mentioned in [11], this algorithm can be optimized substantially. In
particular, the proof of [11], Prop. 21 shows that we can reduce the size of the
space U (the “computational universe”) dramatically. We get the following im-
proved algorithm.

Corollary 4.11 (Improved Approximate Border Basis Algorithm (IABBA)).
In the setting of the theorem, the following algorithm computes the Oσ(I)-border
basis {g1, . . . , gν} of an ideal I = 〈g1, . . . , gν〉 such that f1, . . . , fr are δ -close to I .

C1 Let L be the order ideal spanned by
⋃r

i=1 Supp(fi) .
C2 Using Corollary 4.7, compute a unitary basis V = {f ′1, . . . , f ′r′} of a vector

space V ′
ap which is an approximate leading term basis of V ′

ap .
C3 Using Remark 4.8, compute a unitary basis extension W ′ for V ′

ap ⊆ (V ′
ap)+

so that the elements of V ∪W ′ are an approximate leading term basis of a
vector space close to (V ′

ap)+ .
C4 Let W = {f ∈ W ′ | LTσ(f) ∈ L} .
C5 If

⋃
f∈W Supp(f) * L then replace L by the order ideal spanned by L and⋃

f∈W Supp(f) . Continue with step C4.
C6 If W 6= ∅ then replace V by V ∪W . Continue with step C3.
C7 Let O = L \ {LTσ(v) | v ∈ V} .
C8 If ∂O * L then replace L by the order ideal L+ = L ∪ ⋃n

i=1 xiL and
continue with step C3.

C9 Apply the Final Reduction Algorithm and return the polynomials g1, . . . , gν

computed by it.

To end this section, we apply ABBA to a concrete example.
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Example 4.12. Consider the (approximately) unitary polynomials

f1 = 0.13 z2 + 0.39 y − 0.911 z

f2 = 0.242 yz − 0.97 y

f3 = 0.243 xz − 0.97 y

f4 = 0.242 y2 − 0.97 y

f5 = 0.243 xy − 0.97 y

f6 = 0.035 x5 − 0.284 x4 + 0.497 x3 + 0.284 x2 − 0.532 x + 0.533 y

We apply ABBA with ε = τ = 0.001 and follow the steps. The first basis extension
yields 18 polynomials in step B3, 15 of which are found to be in the computational
universe in step B4. They are f1, . . . , f6 and

f7 = 0.017 z3 + 0.558 y − 0.830z

f8 = 0.064 yz2 + 0.001 z3 − 0.996 y − 0.05 z

f9 = 0.707 y2z − 0.707 yz2 + 0.002 y − 0.0005z

...
f15 = 0.707 x2y − 0.707 x2z

Since we found 9 new polynomials, step B5 forces us to repeat the basis ex-
tension. The second time around we find 32 polynomials in the extended basis,
29 of which are in the universe. The third iteration yields a basis consisting of
52 polynomials, 49 of which are in the universe, and the fourth iteration yields 77
polynomials in the basis and 49 polynomials in the universe.

At this point steps B6 and B7 are executed and show that the iteration is
finished. It remains to apply the Final Reduction Algorithm. The computed order
ideal is O = {1, x, x2, x3, x4, y, z} , its border is

∂O = {x5, x4y, x4z, x3y, x3z, x2y, x2z, xy, y2, xz, yz, z2},
and the resulting border basis consists of f1, . . . , f6 together with

g1 = 0.062 x2y − 0.998 y

g2 = 0.062 x2z − 0.998 y

g3 = 0.016 x3y − 0.9999 y

g4 = 0.016 x3z − 0.9999 y

g5 = 0.004 x4y − 0.99999 y

g6 = 0.004 x4z − 0.99999 y

This result is in good numerical agreement with the exact result in [11], Ex. 20.

5. Approximate Membership for Zero-Dimensional Ideals

Given a polynomial ideal I = 〈f1, . . . , fs〉 ⊆ P and a polynomial g ∈ P , the
classical ideal membership problem asks whether we have g ∈ I . If this is the
case, explicit membership is the search for a concrete representation g = h1f1 +
· · · + hsfs with h1, . . . , hs ∈ P . The standard way to solve the decision problem
is to choose a term ordering σ , compute a σ -Gröbner basis G = {g1, . . . , gt} of I
and use the division algorithm [12], 1.6.4, to decide whether NFσ,G(g) = 0. The
standard method for solving the explicit membership problem consists of invoking
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the extended Buchberger algorithm (cf. [12], 2.5.11), computing the syzygy module
of the Gröbner basis and transforming the syzygies (cf. [12], 3.1.8 and 3.1.9).

In the approximate setting, these methods fail for several reasons:

(1) The polynomial g could be “almost” contained in I , i.e. the normal form
NFσ,G(g) could be “close to” zero.

(2) The computations of the Gröbner bases involved are numerically unstable
and should be replaced by appropriate approximate algorithms.

(3) Solutions to the approximate explicit membership problem are highly non-
unique: every generator fi can be modified by a “small” polynomial, there
exist syzygies of “small” polynomials, and the set of “small” polynomials
has apparently no usable algebraic structure.

Nevertheless, in many industrial applications there are strong incentives to seek
explicit representations g = h1f1 + · · ·+ hsfs . Since there are infinitely many such
representations, which one is the one realized by the physical system? Is there an
“approximate normal form” which enables us to find a candidate for the “simplest”
(and hence a candidate for the “true”) representation?

In this section we examine these questions in the case of zero-dimensional poly-
nomial ideals. For the decision problem for zero-dimensional vanishing ideals, the
solution is simple: just check whether the evaluation vector of g is “small”. Now
let us tackle the explicit membership problem.

Given an empirical zero-dimensional polynomial ideal I , compute an order ideal
O = {t1, . . . , tµ} and an O -border basis G of I . (If I is defined as the vanish-
ing ideal of an approximate set of points, use Theorem 3.3. If I is given by an
approximate system of generators, use Theorem 4.10.)

Suppose that the order ideal O is of the form Oσ(I) = Tn \ LTσ(I) for some
degree compatible term ordering σ . Then G is automatically a σ -Gröbner basis,
and henceforth a Macaulay basis of I (cf. [13], 6.4.18 and 4.2.15). If the order
ideal O is not of this form, we can still use Corollary 3.12 or [17], Section 4. In
either case, we assume that we now have a Macaulay basis H = {h1, . . . , hλ} of I .
Our next step is to pass to a completely reduced orthogonal Macaulay basis. This
“Macaulay bases analogue” of a reduced Gröbner basis is defined as follows.

Definition 5.1. Let H = {h1, . . . , hλ} be a Macaulay basis of I .

(1) A polynomial f ∈ P is called completely reduced with respect to H if in
the canonical representation f = g1h1 + · · ·+ gλhλ + NFI(f) (cf. [17], 6.2
or [18], 4.3) we have f = NFI(f).

(2) The Macaulay basis H is called a completely reduced, orthogonal Macaulay
basis of I if all hi −DF(hi) are completely reduced w.r.t. H and

〈DF(hi), t DF(hj)〉 = 0 for i 6= j and t ∈ P≤deg(hi)−deg(hj)

Here DF(f) denotes the degree form of a polynomial f (see [13], 4.2.8).

Given H , a completely reduced, orthogonal Macaulay basis of I can be com-
puted easily (cf. [17], 6.4). Moreover, it is essentially unique (cf. [17], 6.5). Therefore
we shall from now on assume that H has this property.

Remark 5.2. [Approximate Membership Using Macaulay Bases]
Let H = {h1, . . . , hλ} be a completely reduced, orthogonal Macaulay basis of I .
For any polynomial f ∈ P of degree d , we use the Macaulay Division Algorithm
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(cf. [18], 3.1 and [17], 6.2), to find a representation

f = g1h1 + · · ·+ gλhλ + r0 + · · ·+ rd

with gi ∈ P satisfying deg(gi) ≤ deg(f) − deg(hi) and such that rj ∈ Pj is
homogeneous of degree j . The polynomial COPI(f) = r0 + · · · + rd is called the
canonical orthogonal projection of f w.r.t. I .

If we set f ≈ 0 ⇔ ‖COPI(f)‖ < ε for a given threshold value ε > 0, we can
solve the approximate membership decision problem for zero-dimensional ideals,
presumably in a numerically stable way. The reason for the believed stability of
this procedure is that border bases (and hence completely reduced, orthogonal
Macaulay bases) of a zero-dimensional ideal tend to vary very little if we change
the ideal slightly (cf. [20] and [14]).

Of course, if the degree of f is high, the accuracy of the canonical orthogonal
projection depends on the number of reduction steps involved in the Macaulay
division. A precise error estimate should take this into account.

To solve the explicit membership problem for empirical zero-dimensional ideals,
we have to be even more careful: the representations obtained in the preceding
remark can easily be modified by “almost” syzygies of (h1, . . . , hλ). To get this
ambiguity under control, we proceed as follows.

Remark 5.3. Starting from an order ideal Oσ(I) and the Oσ(I)-border basis
G = {g1, . . . , gν} of I , we compute the completely reduced, orthogonal Macaulay
basis H = {h1, . . . , hλ} of I . Since the residue classes of the terms in Oσ(I) =
{t1, . . . , tµ} form a vector space basis of P/I , we may then calculate a set of poly-
nomials P = {p1, . . . , pµ} such that P≤d is an ONB of the orthogonal complement
of the vector subspace I≤d in P≤d for every d ≥ 0. Note that this condition
is well-defined, since I≤d+1 ∩ 〈P≤d〉 = {0} implies that one ONB is contained in
the next. (If I is the vanishing ideal of an approximate set of points, we can use
Corollary 3.12 to get P . If I is given by an approximate set of generators, we can
use Theorem 4.10 and apply the Gram-Schmidt orthogonalization procedure to the
set O≤d to get P≤d .)

Next we modify the Macaulay Division Algorithm (cf. [18], 3.1 and [17], 6.2)
as follows: if we want to project an element f ∈ P≤d , we take its degree form
DF(f) and project it onto 〈tDF(hi) | t ∈ Tn, deg(thi) = d〉R . The result is the
degree d part of the canonical orthogonal projection and can be expressed as a
linear combination of the elements of Pd .

This yields an algorithm which computes a representation

f = g1h1 + · · ·+ gλhλ + c1p1 + · · ·+ cµpµ

with ci ∈ R and gj ∈ P . Then COPI(f) = c1p1 + · · · + cµpµ of f is the unique
representation of COPI(f) in terms of the ONB P .

Using an ONB P of the complement of I in P , we can finally define approximate
normal forms and solve the approximate explicit membership problem.

Definition 5.4. Let f ∈ P , let P = {p1, . . . , pµ} be an ONB of the orthogonal
complement of I in P , and let ε > 0. We write COPI(f) = c1p1 + · · ·+ cµpµ with
ci ∈ R . Then the polynomial NFap

P,I(f) =
∑
{i:|ci|≥ε} cipi is called the approximate

normal form of f with respect to P and I .

Now the preceding discussion can be summarized as follows.
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Proposition 5.5 (Approximate Explicit Membership for Zero-Dimensional Ideals).
Let I ⊂ P be a zero-dimensional ideal, let H be a completely reduced, orthogonal
Macaulay basis of I , let P = {p1, . . . , pµ} be an ONB of the orthogonal complement
of I in P , let f ∈ P , and let ε > 0 .

(1) The polynomial f is “almost” contained in I if and only if NFap
P,I(f) = 0 .

More precisely, if NFap
P,I = 0 then f is ε

√
µ-close to I , and if f is ε-close

to I then NFap
P,I(f) = 0 .

(2) If f is ε-close to I , we use the Macaulay Division Algorithm to compute
a representation

f = g1h1 + · · ·+ gλhλ + c1p1 + · · ·+ cµpµ

with gi ∈ P of degree deg(gi) ≤ deg(f) − deg(hi) and |ci| < ε . Then the
relation f ≈ g1h1 + · · ·+gλhλ is called an approximate explicit representa-
tion of f . If another polynomial f ′ ∈ P which is also ε-close to I has the
same approximate explicit representation, then we have NFap

P,I(f−f ′) = 0 .

Proof. To show the first claim, we start by assuming that we have COPI(f) =
c1p1 + · · ·+ cµpµ with |ci| < ε . Since P is an ONB of the orthogonal complement

of I in P , the length of the perpendicular from f to I is therefore
√

c2
1 + · · ·+ c2

µ ≤
ε
√

µ . Conversely, if the canonical projection COPI(f) = c1p1 + · · ·+ cµpµ satisfies√
c2
1 + · · ·+ c2

µ ≤ ε , then we have |ci| < ε for i = 1, . . . , µ .
Now we prove the second claim. Let f = g1h1+ · · ·+gλhλ+c1p1+ · · ·+cµpµ and

f ′ = g′1h1+· · ·+g′λhλ+c′1p1+· · ·+c′µpµ be the representations of f and f ′ provided
by the Macaulay Division Algorithm. Since the approximate explicit representation
of f and f ′ are equal, we have gi = g′i for i = 1, . . . , λ . The hypotheses that f

and f ′ are ε-close to I yield
√

c2
1 + · · ·+ c2

µ ≤ ε and
√

(c′1)2 + · · ·+ (c′µ)2 ≤ ε .
Hence the norm of f − f ′ = (c1 − c′1)p1 + · · ·+ (cµ − c′µ)pµ is at most 2ε , and the
approximate normal form of f − f ′ (with respect to the threshold number 2ε) is
zero. ¤

6. Computational Results

In this section we provide some timings for the calculation of approximate vanish-
ing ideals and approximate border bases using our algorithms. Moreover, we show
the effects of a proper data scaling on the quality of the calculated approximate
border or Gröbner bases. The following timings are based on an implementation of
the algorithms of Section 3 in the ApCoCoA library (see [3]). They were produced
using a notebook having an AMD Athlon processor, 1 GB Ram, and running at
2.2 GHz.

Calculating Approximate Vanishing Ideals. The first computational test is
based on a real-world data set coming from an application in oil industry (see
Section 7). This data set contains 2445 points pi = (pi1, . . . , pi9) in [−1, 1]9 ⊂ R9 .
Since these data have large inherent measurement errors, for meaningful numbers ε
the resulting order ideals have a much smaller number of elements than 2445. The
following table shows the results for the computation of an approximate border basis
of an approximate vanishing ideal using Algorithm 3.3 with τ chosen according to
the machine precision, with σ = DegLex , and with the stated values of ε .
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ε # BB deg #O max error avg error time
1 126 ≤ 4 20 0.0868 0.000289 0.44 s

0.5 175 ≤ 4 29 0.1044 0.000238 1.06 s
0.1 301 ≤ 5 54 0.0259 0.000136 3.5 s

0.01 543 ≤ 6 107 0.0006 0.000023 13.4 s
10−5 1815 ≤ 7 484 < 10−6 < 10−6 441 s

Table 1. Calculating Approximate Border Bases for 2445 Points
in R9

The numbers in the max error column are the maximal absolute values of the
evaluations of the border basis polynomials at the given points, and the numbers in
the avg error column are the averages of these absolute values. In view of the fact
that the initial data typically contain errors of about 10% of the values, it is not
advisable to use a very large or very small ε . The numbers for ε = 10−5 correspond
in essence to the exact case ε = 0. Even in that case the algorithm produces an
order ideal of less than 2445 terms because of the finite machine precision.

Table 2 shows the timings and numerical quality of a calculation using the same
data set, but the variant of Remark 3.8 to compute an approximate Gröbner basis
for an approximate vanishing ideal. In the case at hand, the computed polynomials
are indeed an approximate Gröbner basis and no numerical instability surfaces.

ε #GB deg #O max error avg error time
1 31 ≤ 3 16 0.0385 0.000423 0.08 s

0.5 35 ≤ 4 22 0.0385 0.000402 0.12 s
0.1 66 ≤ 5 42 0.0259 0.000157 0.5 s

0.01 112 ≤ 5 78 0.0006 0.000055 1.7 s
10−5 531 ≤ 6 366 < 10−6 < 10−6 78.1 s

Table 2. Calculating a DegLex-Gröbner Basis for 2445 Points in R9

Our second computational test (see Table 3) is the calculation of an approximate
border basis of an ε-approximate vanishing ideal of a set of 10105 points in R9 .
Note that this is also a real-world data set which corresponds to an application in
steel industry described in Section 7.

ε #BB deg #O max error avg error time
1 230 ≤ 4 46 0.4089 0.000205 3.9 s

0.5 373 ≤ 5 78 0.1898 0.000137 10.5 s
0.1 759 ≤ 6 188 0.0579 0.000036 69.5 s

0.01 1765 ≤ 6 524 < 0.01 < 0.00001 685 s
Table 3. Calculating Approximate Border Bases for 10105 Points
in R9

As before, also in this case the Gröbner basis version of the AVI-Algorithm works
just fine:
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ε #GB deg #O max error avg error time
1 90 ≤ 4 38 0.4089 0.000714 4.36 s

0.5 126 ≤ 4 59 0.1898 0.000327 9.70 s
0.1 263 ≤ 5 145 0.0579 0.000084 61.7 s

0.01 659 ≤ 6 395 < 0.01 < 0.00001 705 s

Table 4. Calculating DegLex-Gröbner Bases for 10105 Points in R9

Applying the Approximate Border Basis Algorithm. To test the Approx-
imate Border Basis Algorithm (ABBA), we computed the approximate vanishing
ideal of certain sets of approximate points and then applied ABBA to find a bor-
der basis for this approximate zero-dimensional ideal. The following timings were
obtained with a top-level implementation of ABBA in CoCoAL using the ApCoCoA
library (cf. [3]).

The first example is an ideal in R[x, y, z] generated by the polynomial

f1 = 0.041805x3 + 0.017262x2y + 0.016641x2z + 0.020066xy2 + 0.000575xyz

+0.020825xz2 + 0.007537y3 + 0.007845y2z + 0.007695yz2 + 0.007928z3

−0.22902x2 − 0.12885xy − 0.13055xz − 0.092272y2 − 0.067469yz

−0.095283z2 + 0.51837x + 0.33792y + 0.34477z

and further similar 12 polynomials of degrees 4,4,4,4,5,5,5,5,5,6,6,6. The threshold
number used for pivoting in Corollary 4.7 and Remark 4.8 is τ = 10−5 . The
number ε in the following table is the cut-off value for the SVD which has to be
computed in step 3 of Remark 4.8.

ε #BB deg time
1 0.1 81 ≤ 6 2.81 s
2 0.01 83 ≤ 6 1.44 s
3 0.001 84 ≤ 6 0.70 s
4 0.0001 84 ≤ 6 0.70 s
5 0.00001 84 ≤ 6 0.72 s
6 0.000001 84 ≤ 6 0.71 s

Table 5. Calculating a Border Basis of 84 Polynomials with ABBA

Note that the execution time initially decreases with decreasing ε . This is due
to the fact that the algorithm decides earlier to enlarge the computational universe.

In our second example we use an ideal generated by 29 polynomials of degrees
6,7,8, and 9. The threshold number is τ = 10−10 .

Data Scaling. The example calculations we have performed indicate strongly that
data scaling is an important factor for the numerical quality of the results of our
algorithms. From the algebraic point of view, scaling does not affect the problem,
but from the numerical point of view scaling provides additional stability for the
solution.

To show this effect, we use a real-world data set consisting of 2541 points in R7 .
For both computations, we truncate singular values less than 0.0001. The scaled
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ε #BB deg time
1 0.1 220 ≤ 9 59.60 s
2 0.01 173 ≤ 9 27.70 s
3 0.001 216 ≤ 9 11.95 s
4 0.0001 220 ≤ 9 5.34 s
5 0.00001 220 ≤ 9 4.94 s
6 0.000001 220 ≤ 9 5.17 s

Table 6. Calculating a Border Basis of 220 Polynomials with ABBA

version is calculated in approx. 2 seconds, while the unscaled version takes approx. 4
seconds. The following figure visualizes the effect of numerical instabilities. The left
picture shows the mean length of the evaluation vectors of the computed Gröbner
basis polynomials without scaling. The right picture shows the same measure of
numerical quality for a computation which used data scaling.

Figure 3. Mean Evaluation Errors Without and With Data Scaling

From an algebraic point of view, the algorithm produces a “correct” result in
both cases. However, numerical inaccuracies and high degrees of the computed
polynomials lead to undesirable results if we do not use data scaling. We consider
the mean length of the evaluation vectors of a Gröbner basis polynomial at the
given points. In the left figure the maximal mean evaluation error is ≈ 2.8 · 108 ,
i.e. these polynomials are completely useless. If we use data scaling, we get a
maximal mean evaluation error of less than 0.025 in the right figure. Moreover, in
the scaled example we have about 100 elements in the Gröbner basis, compared to
more than 280 polynomials in the unscaled version.

Not surprisingly, this example (and many similar ones we tried) suggests that
data scaling provides several benefits: shorter running times, smaller output size,
and a dramatically improved numerical quality of the result.

7. Applications

Our goal in this final section is to describe some practical problems which orig-
inated our interest in the topic at hand and to explain how our techniques can be
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applied to those practical problems. Let us begin by explaining the “meta” appli-
cation which motivates much of our continuing research. After that we look at two
concrete applications.

Searching for Relations in Measured Data. Assume that we are given a set
of measurements, for example several time series. We want to find algebraic re-
lations in these data, i.e. polynomial formulas which are almost fulfilled at every
sampling point. These formulas can then be used to determine a minimal inde-
pendent set of inputs or to indulge in other forms of data-mining. Polynomial
relations which are exactly satisfied at each data point can be found using the clas-
sical Buchberger-Möller algorithm (see [2] and [15]). However, time series coming
from real measurements tend to contain measurement errors. In this case exact
interpolation yields misleading results.

Instead, we should be looking for polynomial relations which are almost satisfied
by the time series. Thus the AVI-Algorithm 3.3 provides us with the kind of
relations we are searching for. In fact, we get a border basis that also provides
additional stability with respect to variations of the input data (cf. [20]).

Nevertheless, there is still one problem which has to be addressed: what happens
if the “true” approximate relations which exist in the data sets are not of a poly-
nomial nature? With our algorithms, we can only find polynomials of low degree
passing almost through the points. To pass this hurdle, it may be worthwhile to
examine the (partial) differential equations or other laws governing the physical
system in which the data were measured. If the variable corresponding to some
time series appears within a non-polynomial function (e.g. within a logarithm or a
square root), we should perform the inverse transformation on the time series, so
that we have a fair chance that the variable underlying the new time series appears
in a polynomial relation. Of course, this approach requires a thorough understand-
ing of the physical system. In any case, the quality of the polynomial relations
we find using our algorithms can be easily judged from the degree and the size of
the resulting polynomials and by comparing the remaining evaluation errors to the
estimated size of the measurement errors.

Oil Industry. Certain problems one encounters in oil and gas production were
the motivation to start this investigation. We will present here briefly a couple of
these motivating problems. An in-depth decription of these applications has been
provided in a separate paper (cf. [8]).

A common situation in production operations in oil industry is that a number
of wells produce into a large piece of tubing called the bulk header, and from this
header the common production flows to the bulk separator, where the different
phases, namely oil, water and gas, are separated and the production rates of the
separated phases are measured. The productions from the individual wells are ob-
tained through a well test. A well test is an experiment where the well is decoupled
from the bulk header and connected to the test header which in turn is connected
to the test separator. Here again the phase productions are measured, but this time
those of the well-on-test only. The phase productions from the well-on-test are re-
combined downstream from the test separator, and added to the production from
the other wells, and this common production is processed by the bulk separator.
Apart from the phase productions also quantities like pressures, temperatures, and
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injected “lift-gas” are measured. These additional measured quantities are exam-
ples of what we have called inputs in Section 1, whereas the phase productions are
examples of what we have called outputs there. Fitting the inputs measured during
the test to the measured oil production, assuming a polynomial model and using
standard least squares techniques (specifically the techniques described in [4]), gives
some production polynomial for the well-on-test.

Here we have our first encounter with polynomials having small evaluations over
the test set X : different production polynomials (in terms of total degree and
support), for the same well may result in equivalent goodness of fit results in the
validation experiments (see Section 1). Pairwise differences between these produc-
tion polynomials yield polynomials having small evaluations. Relations among the
input variables are causing this ambiguity. Hence the calculation of an approxi-
mate vanishing ideal from Section 3 of the test set points helps us establish these
relations among the input variables. Having computed an approximation for the
ideal of relations I , the construction of the production polynomial can be repeated,
but this time by fitting against the R -vector space basis O of P/I , where P is the
polynomial ring associated with the well test experiment, or with respect to the
orthonormal vector space basis of a complement of I in P from Corollary 3.12.

Alternatively, an algebraic equation for the well production may be established
directly from an approximate vanishing ideal calculation by adding the points as-
sociated with the measured production to the set X for this calculation. This may
lead to an implicit equation in the well production. We obtain simplifications in
this connection by using physical knowledge about the problem at hand. More
precisely, we may construct new indeterminates from our original ones on the ba-
sis of this physical knowledge. To be specific, an example of such a constructed
indeterminate could be x =

√
(xi − xj)xj , where xi and xj are original indeter-

minates related to pressures and where xi− xj is related to the pressure drop over
a restriction. Here restriction should be interpreted in a broad sense like a valve, a
piece of tubing, or the inflow opening from the reservoir to the production tubing.
Then the quantity x is associated with the driving force over this restriction. But
most of all we should realize that our term ordering, and specifically the ordering of
the indeterminates, is here not just “any” abstract ordering. A particular physical
meaning is associated with the indeterminates and the terms. A judicious choice
of the term ordering that is also based on physical knowledge about the problem
provides further possibilities to investigate this important problem of determining
the relations among the variables.

Next we explain how our results from Sections 4 and 5 can be applied in this
setting. Let us assume that we have production polynomials f1, . . . , fs available
which describe the wells when they are producing in isolation, that is purely as
a separate production system. This is a strong assumption. Our justification for
it is that it serves our present motivation purposes well. Moreover, assume that
we also have the total production polynomial f available. If none of the wells is
producing, there is also no total production. And since no production implies a
zero of the concerning production polynomial, it follows that the total production
polynomial vanishes on the set of common zeros of the well production polynomials.
By Hilbert’s Nullstellensatz, the total production polynomial is a member of the
radical of the ideal generated by the well production polynomials. Furthermore,
since the empirical well production polynomials are generic, they generate a radical
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ideal. The results of Section 4 enable us to compute the ideal generated by the
empirical production polynomials, whereas the results of Section 5 enable us to
solve the approximate membership problem for the total production polynomial for
this ideal. This means that we get an explicit representation f = h1f1 + · · ·+ hsfs

for the total production in terms of the separate well productions. The polynomials
hi express the interactions in the well production system. Now the total volume
of oil that can be produced from an oil reservoir is called the ultimate recovery.
The current state of the art allows an ultimate recovery of at most 30%. The main
reason for this figure being so low is the fact that the above indicated interactions
are unknown. This is partly induced by the technological set-up described above.
Thus our results allow a direct attack on the ultimate recovery problem, which is
to date the most challenging problem in oil and gas production operations.

Steel Industry. Finally, we briefly describe a problem arising in steel industry
which can be tackled using the above techniques. Given a process chain, it is of
utmost importance that the melted metal has a guaranteed minimum temperature
at the corresponding stages in the process chain. After the metal is melted the
annealing process lowers the temperature. This annealing depends strongly on
the ingredients initially put into the melting process. Some of these ingredients
are cheap, others are quite expensive. Some of them slow the annealing process
down, others speed it up. Moreover, there are non-trivial interactions between the
ingredients. The aim is to determine a good mixture of ingredients to control the
annealing behavior.

This problem could be seen a classical optimization problem. Unfortunately, no
good model describing the annealing process is known. As such a model would also
have to account for the physical environment (e.g. the surrounding air temperature,
humidity, diameter of the container, ...), it would necessarily be quite complicated.

Instead, the methods we described make it possible to search for a model de-
scribing the annealing process for a specific setting. Classical approaches predict
the annealing behavior only up to an error between 20% and 30%. Consequently,
to ensure the necessary temperature at every stage in the process chain, the steel
often has to be heated much more than necessary, driving up the cost of produc-
tion substantially. Using Section 3, we get a much more accurate prediction with
an overall error between 7% and 12% in the tested example. This enables us to
determine a better mixture for the actual melting process and to simultaneously
lower the initial temperatures.
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