
ar
X

iv
:0

90
5.

10
90

v1
  [

m
at

h.
A

C
] 

 7
 M

ay
 2

00
9

SUBIDEAL BORDER BASES

MARTIN KREUZER AND HENK POULISSE

Abstract. In modeling physical systems, it is sometimes useful to construct
border bases of 0-dimensional polynomial ideals which are contained in the
ideal generated by a given set of polynomials. We define and construct such
subideal border bases, provide some basic properties and generalize a suitable
variant of the Buchberger-Möller algorithm as well as the AVI-algorithm of [5]
to the subideal setting. The subideal version of the AVI-algorithm is then
applied to an actual industrial problem.
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1. Introduction

In [5] an algorithm was introduced which computes an approximate border basis
consisting of unitary polynomials that vanish approximately at a given set of points.
It has been shown that this AVI-algorithm is useful for modeling physical systems
based on a set of measured data points. More precisely, given a finite point set
X = {p1, . . . , ps} ⊂ [−1, 1]n , the AVI-algorithm computes an order ideal O of
terms in Tn and an O -border prebasis G = {g1, . . . , gν} such that

(1) the unitary polynomials gi/‖gi‖ vanish ε -approximately at X , where ε > 0
is a given threshold number, and

(2) the normal remainders of the S-polynomials S(gi, gj) for gi, gj with neigh-
boring border terms are smaller than ε .

Abstractly speaking, the last condition means that the point in the moduli space
corresponding to G is “close” to the border basis scheme (see [11] and [8]). In
practical applications, the AVI-algorithm turns out to be very stable and useful.
With a judicial choice of the threshold number ε , it is able to discover simple
polynomial relations which exist in the data with high reliability. For instance,
it discovers simple physical laws inherent in measured data without the need of
imposing model equations.
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However, in some situations physical information may be available which is not
contained in the data points X or we may have exact physical knowledge which is
only approximately represented by the data points. An example for this phenom-
enon will be discussed in Section 6. For instance, we may want to impose certain
vanishing conditions on the model equations we are constructing. Using Hilbert’s
Nullstellensatz this translates to saying that what we are looking for is the inter-
section of the vanishing ideal of X with a given ideal J ⊆ R[x1, . . . , xn] whose
generators represent the vanishing conditions we want to impose.

In order to be able to deal with this approximate situation, it is first necessary to
generalize the exact version of the computation of vanishing ideals to the subideal
setting. Then this theory will serve as a guide and a motivation for the approxi-
mate case. Therefore this paper begins in Section 2 with the definition and basic
properties of subideal border bases.

Given a 0-dimensional ideal I in a polynomial ring P = K[x1, . . . , xn] over a field
and a set of polynomials F = {f1, . . . , fm} generating an ideal J = 〈F 〉 , a subideal
border basis of I corresponds to a set of polynomials OF = O1 · f1 ∪ · · · ∪Om · fm ,
where the Oi are order ideals of terms, such that the residue classes of the elements
of OF form a K -basis of J/(I ∩ J) ∼= (I + J)/I . Clearly, this generalizes the case
F = {1} , i.e. the “usual” border basis theory. We show that subideal border bases
always exist and explain a method to construct them from a border basis of I .
Moreover, we discuss some uniqueness properties of subideal border bases.

The foundation of any further development of the theory of subideal border bases
is a generalization of the Border Division Algorithm (see [10], 6.4.11) to the subideal
case. This foundation is laid in Section 3 where we also study higher OF -borders,
the OF -index, and show that a subideal border basis of I generates I ∩ J .

In Section 4, we generalize the Buchberger-Möller algorithm (BM-algorithm) for
computing vanishing ideals of point sets to the subideal setting. More precisely,
we generalize a version of the BM-algorithm which proceeds blockwise degree-by-
degree and produces a border basis of the vanishing ideal. Similarly, the subideal
version of the BM-algorithm (cf. Algorithm 4.2) computes an Oσ(IX)F -subideal
border basis of IX , where Oσ(IX) is the complement of a leading term ideal of the
vanishing ideal IX of X .

Next, in Section 5, we turn to the setting of Approximate Computational Alge-
bra. We work in the polynomial ring R[x1, . . . , xn] over the reals and assume that
X ⊂ [−1, 1]n is a finite set of (measured, imprecise) points. We define approximate
OF -subideal border bases and generalize the AVI-algorithm from [5], Thm. 3.3 to
the subideal case.

Let us point out that the subideal version of the AVI algorithm contains a sub-
stantial difference to the traditional way of computing approximate vanishing ideals,
e.g. as in [1]. Namely, the AVI algorithm produces a set of polynomials which van-
ish approximately at the given data points, but we do not demand that there exists
a “nearby” set of points at which these polynomials vanish exactly. The latter
requirement has turned out to be too restrictive for real-world applications, for
instance the one we explain in the last section. There we provide an example for
the application of these techniques to the problem of production allocation in the
oil industry.

Unless explicitly stated otherwise, we use the notation and definitions of [9]
and [10]. We shall assume that the reader has some familiarity with the theory of
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exact and approximate border bases (see for instance [5], [6], [7], [8], Section 6.4
of [10], and [12]).

2. Subideal Border Bases

Here we are interested in a “relative” version of the notion of border bases in
the following sense. Let K be a field, let P = K[x1, . . . , xn] be a polynomial ring,
let Tn be its monoid of terms, let O be an order ideal in Tn , and let I ⊂ P be a
0-dimensional ideal.

Suppose we are given a further polynomial ideal J = 〈f1, . . . , fm〉 of P , where
F = {f1, . . . , fm} ⊂ P \ {0} . Our goal is to describe and compute the intersection
ideal I ∩ J as a subideal of J . By Noether’s isomorphism theorem, we have
J/(I ∩ J) ∼= (I + J)/I ⊂ P/I . Therefore J has a finite K -vector space basis
modulo I ∩ J . Now we are looking for the following special kind of vector space
basis.

Definition 2.1. Let O be an order ideal of terms in Tn whose residue classes form
a K -vector space basis of P/I .

(1) For i = 1, . . . , m , let Oi ⊆ O be an order ideal. Then the set OF =
O1 ·f1∪· · ·∪Om ·fm is called an F -order ideal. Its elements, i.e. products
of the form tfi with t ∈ Oi will be called F -terms.

(2) If OF = O1 · f1 ∪ · · · ∪ Om · fm is an F -order ideal whose residue classes
form a K -vector space basis of J/(I ∩ J), we say that the ideal I has an
OF -subideal border basis.

Notice that an F -term may be viewed as a generalization of the usual notion
of term by using F = {1} . Similarly, F -order ideals generalize the usual order
ideals. It is natural to ask whether every ideal I supporting an O -border bases has
an OF -subideal border basis for some F -order ideal OF . The next proposition
answers this positively.

Proposition 2.2. Let I ⊂ P be a 0-dimensional ideal, and let J = 〈f1, . . . , fm〉 ⊂
P be any ideal.

(1) Given an order ideal O ⊂ Tn whose residue classes generate the K -vector

space P/I , there exists an order ideal Õ ⊆ O whose residue classes from

a K -vector space basis of P/I .

(2) Let U ⊂ Pm be a P -submodule, and let O1, . . . ,Om be order ideals in Tn

such that the residue classes of O1e1 ∪ · · · ∪ Omem generate the K -vector

space Pm/U . Then there exist order ideals Õi ⊆ Oi such that the residue

classes of Õ1e1 ∪ · · · ∪ Õmem form a K -vector space basis of Pm/U .

(3) If O is an order ideal whose residue classes from a K -vector space basis

of P/I then there exist order ideals Oi ⊆ O such that the residue classes

of OF = O1f1 ∪ · · · ∪ Omfm are a K -vector space basis of J/(I ∩ J) . In

other words, the ideal I has an OF -subideal border basis.

Proof. First we show (1). We construct the order ideal Õ inductively. To this end,
we choose a degree compatible term ordering σ and order O = {t1, . . . , tµ} such
that t1 <σ · · · <σ tµ . In particular, we have t1 = 1. Since I ⊂ P , we can start by

putting t1 into Õ and removing it from O .
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For the induction step, we consider the σ -smallest term ti which is still in O .
If the residue class of ti in P/I is K -linearly dependent on the residue classes of

the elements in Õ , we cancel ti and all of its multiples in O . Each of these terms
can be rewritten modulo I as a linear combination of smaller terms w.r.t. σ . If
the residue class of ti in P/I is K -linearly independent of the residue classes of

the elements in Õ , we append ti to Õ and remove it from O . In this way, the

residue classes of the elements of Õ are always K -linearly independent in P/I ,
and every element of O can be rewritten modulo I as a K -linear combination of

the elements of the final set Õ .
Now we show (2). Let U be the idealization of U in P = K[x1, . . . , xn, e1, . . . , em]

(see [10], Section 4.7.B). The residue classes of the elements of the order ideal
O = O1e1 ∪ · · · ∪ Omem generate the K -vector space P/U . Now it suffices to
apply (1) and to note that every order subideal of O has the indicated form.

Finally, we prove (3). Consider the P -linear map ϕ : Pm −→ P/I defined by
ei 7→ fi + I . Its image is the ideal (I + J)/I . Let U = ker(ϕ). Then ϕ induces an
isomorphism ϕ̄ : Pm/U ∼= (I + J)/I . To get a system of generators of Pm/U , it
suffices to find a system of generators of the ideal (I +J)/I = 〈f1 + I, . . . , fm + I〉 .
As a vector space, this ideal is generated by O · (f1 + I) ∪ · · · ∪ O · (fm + I).
The preimages of these generators are the elements of Oe1 ∪ · · · ∪ Oem . Now an
application of (2) finishes the proof. �

Based on this proposition, we can construct an F -order ideal such that a given
ideal I has an OF -subideal border basis. The following example illustrates the
method.

Example 2.3. Let P = Q[x, y] , let I = 〈x2−x, y2−y〉 , let O = {1, x, y, xy} , and
let J = 〈x + y〉 . Then I has an O -border basis and therefore also an OF -subideal
border basis w.r.t. F = {f} for f = x + y .

To construct a suitable F -order ideal, we start with OF = {1 · f} . Then we
put x · f and y · f into OF , since we have x · f ≡ xy + x and y · f ≡ xy + y
modulo I , and since {x + y, xy + x, xy + y} is Q -linearly independent in P/I .
Next xy · f ≡ 2xy ≡ x · f + y · f − 1 · f implies that we are done. The result is
that OF = {f, xf, yf} is an F -order ideal for which I has an OF -subideal border
basis.

At this point it is time to explain the choice of the term “subideal border basis”
in the above definition.

Definition 2.4. Let F = {f1, . . . , fm} ⊂ P \{0} , and let OF = O1f1∪· · ·∪Omfm

be an F -order ideal. We write OF = {t1fα1
, . . . , tµfαµ

} with αi ∈ {1, . . . , m} and
ti ∈ Oαi

.

(1) The set of polynomials ∂OF = (x1OF ∪ · · · ∪ xnOF ) \ OF is called the
border of OF .

(2) Let ∂OF = {b1fβ1
, . . . , bνfβν

} . A set of polynomials G = {g1, . . . , gν} is
called an OF -subideal border prebasis if gj = bjfβj

− ∑µ
i=1

cijtifαi
with

c1j , . . . , cµj ∈ K for j = 1, . . . , ν .
(3) An OF -subideal border prebasis G is called an OF -subideal border basis

of an ideal I if G is contained in I and the residue classes of the elements
of OF form a K -vector space basis of J/(I ∩ J).
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In this terminology, the last part of the preceding proposition can be rephrased
as follows.

Corollary 2.5. Let O be an order ideal in Tn , and let I ⊂ P be a 0-dimensional

ideal which has an O -border basis. Then I has an OF -subideal border basis for

every ideal J = 〈f1, . . . , fm〉 and F = {f1, . . . , fm} ⊂ P \ {0} .

In the setting of Example 2.3, the OF -subideal border basis of I can be con-
structed as follows.

Example 2.6. The border of the F -order ideal OF = {f, xf, yf} is ∂OF =
{x2f, xyf, y2f} . We compute modulo I and find x2f ≡ xf , xyf ≡ xf + yf − f ,
and y2f ≡ yf . Therefore the set G = {x2f − xf, xyf − xf − yf + f, y2f − yf} is
an OF -subideal border basis of I .

If an ideal has an OF -subideal border basis, the elements of this basis are
uniquely determined. This follows exactly as in the case J = 〈1〉 , i.e. the case
of the usual border bases (see [10], 6.4.17 and 6.4.18). Notice, however, that a set
of polynomials may be an F -order ideal in several different ways. This is illustrated
by the following example.

Example 2.7. Let P = Q[x, y] , let I = 〈x2 − x, y2 − y〉 , and let J = 〈x, y〉 .
Clearly, the ideal I has an O -border basis for O = {1, x, y, xy} , namely the set
G = {x2−x, x2y−xy, xy2−xy, y2−y} . Hence the ideal I also has an OF -subideal
border basis for F = {x, y} . Here we can use both OF = {1, y} · x ∪ {1} · y and
OF = {1} · x ∪ {1, x} · y .

This example shows also another phenomenon: an F -term can simultaneously
be contained in OF and in ∂OF . For instance, if we use OF = {1, y}·x∪{1}·y , the
term xy is both contained in {1, y} · x and in the border of {1} · y . The resulting
subideal border basis will contain the polynomial xy − xy = 0.

Finally, we give an example where a term is in ∂OF in two different ways, so
that a subideal border basis polynomial is repeated.

Example 2.8. Let I = 〈x2−x, y2−y, xy〉 ⊆ Q[x, y] , and let J = 〈x, y〉 ⊂ Q[x, y] .
Then the subideal border basis of I with respect to OF = {1} · x ∪ {1} · y is
G = {x2 − x, xy, xy, y2 − y} where xy appears both in ∂{1} · x and in ∂{1} · y .

3. The Subideal Border Division Algorithm

A central result in the construction of any Gröbner-basis-like theory is a suit-
able version of the division algorithm (for the classical case, see for instance [9],
Thm. 1.6.4 and specifically for border bases, see [10], Prop. 6.4.11). Before we can
present a subideal border basis version, we need a few additional definitions.

Definition 3.1. Let F = {f1, . . . , fm} ⊂ P \{0} , and let OF be an F -order ideal.

(1) The first border closure of OF is ∂OF = OF ∪ ∂OF .
(2) For every k ≥ 1, we inductively define the (k + 1)st border of OF by

∂k+1OF = ∂(∂kOF ) and the (k + 1)st border closure of OF by ∂k+1OF =

∂kOF ∪ ∂k+1OF .
(3) Finally, we let ∂0OF = ∂0OF = OF .

Using these higher borders, the set Tn f1 ∪ · · · ∪Tn fm is partitioned as follows.
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Proposition 3.2. Let F = {f1, . . . , fm} ⊂ P \ {0} , and let OF be an F -order

ideal.

(1) For every k ≥ 0 , we have a disjoint union ∂kOF =
⋃k

i=0
∂iOF .

(2) For every k ≥ 0 , we have ∂kOF = Tn
≤k · OF .

(3) For every k ≥ 1 , we have ∂kOF = Tn
k · OF \ Tn

<k · OF .

(4) We have
⋃m

i=0
Tn · fi =

⋃∞

j=0
∂jOF , where the right-hand side is a disjoint

union.

(5) Any F -term tfi ∈ Tn · fi \ OF is divisible by an F -term in ∂OF .

Proof. First we show (1) by induction on k . For k = 0, the claim follows from

the definition. For k = 1, we have ∂1OF = ∂0OF ∪ ∂1OF by Definition 3.1.a.

Inductively, it follows that ∂k+1OF = ∂kOF ∪ ∂k+1OF =
⋃k+1

i=0
∂iOF . This is a

disjoint union, since ∂k+1OF ∩ ∂kOF = ∅ in each step.
Next we prove claim (2). Again we proceed by induction on k , the case k = 0

being obviously true. Inductively, we have ∂k+1OF = ∂kOF ∪ ∂k+1OF = Tn
≤k ·

OF ∪ Tn
1 · (Tn

≤k · OF ) = Tn
≤k+1 · OF .

Claim (3) is a consequence of (2) and the equality ∂kOF = ∂kOF \∂k−1OF . The

fourth claim follows from the observation that, by (2), every F -term is in ∂kOF

for some k ≥ 0.
Finally, claim (5) holds because (4) implies that tfi ∈ ∂kOF for some k ≥ 1,

and by (3) this is equivalent to the existence of a factorization t = t′t′′ where
deg(t′) = k − 1 and t′′fi ∈ ∂OF . �

In view of this result, the following definition appears natural.

Definition 3.3. Let F = {f1, . . . , fm} ⊂ P \{0} , and let OF be an F -order ideal.

(1) For an F -term tfi ∈ OF , we define indOF
(tfi) = min{k ≥ 0 | tfi ∈ ∂kOF }

and call it the OF -index of tfi .
(2) Given a non-zero polynomial f ∈ J , we write f = p1f1 + · · ·+ pmfm with

pi ∈ P and we let P = (p1f1, . . . , pmfm). Then the number

indOF
(P) = max{indOF

(tfi) | i ∈ {1, . . . , m}, t ∈ Supp(pi)}
is called the OF -index of the representation P of f .

In other words, the OF -index of tfi is the unique number k ≥ 0 such that
tfi ∈ ∂kOF . Note that the OF -index of a polynomial f ∈ J depends on the
representation of f in terms of the generators of J . It is not clear how to find a
representation P which yields the smallest indOF

(P). Using the Subideal Border
Division Algorithm, we shall address this point below.

The following proposition collects some basic properties of the OF -index.

Proposition 3.4. Let F = {f1, . . . , fm} ⊂ P \ {0} , and let OF be an F -order

ideal.

(1) For an F -term tfi ∈ Tn · fi , the number k = indOF
(tfi) is the smallest

natural number such that there exists a factorization t = t′t′′ with a term

t′ ∈ Tn of degree k and with t′′fi ∈ OF .

(2) Given t ∈ Tn and an F -term t′fi ∈ Tn · fi , we have

indOF
(t t′fi) ≤ deg(t) + indOF

(t′fi).
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(3) For f, g ∈ J \{0} such that f +g 6= 0 , we write f = p1f1 + · · ·+pmfm and

g = q1f1 + · · · + qmfm with pi, qj ∈ P , and we let P = (p1f1, . . . , pmfm)
and Q = (q1f1, . . . , qmfm) . Then we have

indOF
(P + Q) ≤ max{indOF

(P), indOF
(Q)}.

(4) Given f ∈ J \ {0} , we write f = p1f1 + · · · + pmfm with pi ∈ P and let

P = (p1f1, . . . , pmfm) . For every g ∈ P \ {0} , we then have

indOF
(gP) ≤ deg(g) + indOF

(P).

Proof. The first claim follows from Prop. 3.2. The second claim follows from the
first. The third claim is a consequence of the fact that every F -term appearing in
P + Q appears in P or Q . The last claim follows from (2) and the observation
that gP is a K -linear combination of tuples tP with t ∈ Supp(g). �

Now we have collected enough material to formulate and prove the subideal
version of the Border Division Algorithm.

Algorithm 3.5. (The Subideal Border Division Algorithm)
Let F = {f1, . . . , fm} ⊂ P \ {0} , let OF = {t1fα1

, . . . , tµfαµ
} be an F -order

ideal where αi ∈ {1, . . . , m} and ti ∈ Oαi
, let ∂OF = {b1fβ1

, . . . , bνfβν
} be its

border, and let {g1, . . . , gν} be an OF -subideal border prebasis, where gj = bjfβj
−∑µ

i=1
cijtifαi

with c1j , . . . , cµj ∈ K for j = 1, . . . , ν . Given a polynomial f ∈ J ,

we write f = p1f1 + · · · + pmfm and consider the following instructions.

D1 Let h1 = · · · = hν = 0 , c1 = · · · = cµ = 0 , and Q = (q1f1, . . . , qmfm) with

qi = pi for i = 1, . . . , m .

D2 If Q = (0, . . . , 0) then return (h1, . . . , hν , c1, . . . , cµ) and stop.

D3 If indOF
(Q) = 0 then find c1, . . . , cµ ∈ K such that q1f1 + · · · + qmfm =

c1t1fα1
+ · · · + cµtµfαµ

. Return (h1, . . . , hν , c1, . . . , cµ) and stop.

D4 If indOF
(Q) > 0 then determine the smallest index i ∈ {1, . . . , m} such

that there exists a term t ∈ Supp(qi) with indOF
(tfi) = indOF

(Q) . Choose

such a term t . Let a ∈ K be the coefficient of t in qi . Next, determine the

smallest index j ∈ {1, . . . , ν} such that t factors as t = t′ t′′ with a term t′

of degree indOF
(tfi) − 1 and with t′′fi = bjfβj

∈ ∂OF . Subtract the tuple

corresponding to the representation

a t′ gj = a t′ bjfβj
−

µ∑

i=1

cij a t′ tifαi

from Q , add at′ to hj , and continue with step D2.

This is an algorithm which returns a tuple (h1, . . . , hν , c1, . . . , cµ) ∈ P ν ×Kµ such

that

f = h1g1 + · · · + hνgν + c1t1fα1
+ · · · + cµtµfαµ

and deg(hi) ≤ indOF
(P) − 1 for P = (p1f1, . . . , pmfm) and for all i ∈ {1, . . . , ν}

with hi 6= 0 . This representation does not depend on the choice of the term t in

step D4.

Proof. First we show that all steps can be executed. In step D3, the condition
indOF

(Q) = 0 implies that all F -terms tfi with t ∈ Supp(qi) are contained in OF .
In step D4, the definition of indOF

(Q) implies that a term t of the desired kind
exists. By Proposition 3.4.1, this term t has a factorization t = t′t′′ with the
desired properties.
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Next we prove termination by showing that step D4 is performed only finitely
many times. Let us investigate the subtraction of the representation of at′gj

from Q . By the choice of t′ , the OF -index of t′bjfβj
is deg(t′) more than the

OF -index of bjfβj
. By Prop. 3.4.b, this is the maximal increase, and the OF -index

of the other F -terms in the representation of at′gj is smaller than indOF
(Q). Thus

the number of F -terms in Q of maximal OF -index decreases by the subtraction,
and after finitely many steps the algorithm reaches step D2 or D3 and stops.

Finally, we prove correctness. To do so, we show that the equality

f = q1f1 + · · · + qmfm + h1g1 + · · · + hνgν + c1t1fα1
+ · · · + cµtµfαµ

is an invariant of the algorithm. It is satisfied at the end of step D1. The constants
c1, . . . , cµ are only changed in step D3. In this case the contribution q1f1 + · · · +
qmfm to the above equality is replaced by the equal contribution c1t1fα1

+ · · · +
cµtµfαµ

. The tuple Q is only changed in step D4. There the subtraction of the
representation of at′gj from Q and the corresponding change in q1f1 + · · ·+ qmfm

are compensated by the addition of at′ to hj and the corresponding change in
h1g1 + · · · + hνgν . When the algorithm stops, we have q1 = · · · = qm = 0. This
proves the claimed representation of f . Moreover, only terms of degree deg(t′) ≤
indOF

(Q) − 1 ≤ indOF
(P) − 1 are added to hj .

The additional claim that the result of the algorithm does not depend on the
choice of t in step D4 follows from the observation that tfi is replaced by F -terms
of strictly smaller OF -index. Thus the different executions of step D4 correspond-
ing to the reduction of several F -terms of maximal OF -index in Q do not interfere
with one another, and the final result – after all those F -terms have been rewritten
– is independent of the order in which they are taken care of. �

Notice that in step D4 the algorithm uses a term t which is not uniquely de-
termined. Also there may be several factorizations of t . We choose the indices i
and j minimally to determine this step of the algorithm uniquely, but this particu-
lar choice is not forced upon us. Moreover, it is clear that the result of the division
depends on the numbering of the elements of ∂OF .

As indicated above, the Subideal Border Division Algorithm has important im-
plications. The following corollaries comprise a few of them.

Corollary 3.6. (Subideal Border Bases and Special Generation)
In the setting of the algorithm, let I = 〈G〉 . Then the set G is an OF -subideal

border basis of I if and only if one of the following equivalent conditions is satisfied.

(A1) For every non-zero polynomial f ∈ I ∩ J with a representation f = p1f1 +
· · ·+pmfm and P = (p1f1, . . . , pmfm) , there exist polynomials h1, . . . , hν ∈
P such that f = h1g1 + · · ·+ hνgν and deg(hi) ≤ indOF

(P) − 1 whenever

higi 6= 0 .

(A2) For every non-zero polynomial f ∈ I ∩ J with a representation f = p1f1 +
· · · + pmfm and P = (p1f1, . . . , pmfm) , there exist h1, . . . , hν ∈ P such

that f = h1g1 + · · · + hνgν and max{deg(hi) | i ∈ {1, . . . , ν}, higi 6= 0} =
indOF

(P) − 1 .

Proof. First we show that (A1) holds if G is an OF -border basis. The Subideal
Border Division Algorithm computes a representation f = h1g1 + · · · + hνgν +
c1t1fα1

+· · ·+cµtµfαµ
with h1, . . . , hν ∈ P and c1, . . . , cµ ∈ K such that deg(hi) ≤
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indOF
(P) − 1 for i = 1, . . . , ν . Then c1t1fα1

+ · · · + cµtµfαµ
≡ 0 modulo I , and

the hypothesis implies c1 = · · · = cµ = 0.
Next we prove that (A1) implies (A2). If deg(hi) < indOF

(P) − 1, then
Prop. 3.4.2 shows that the OF -index of every representation of higi is at most
deg(hi) + 1 and hence smaller than indOF

(P). By Prop. 3.4.4, there has to be at
least one number i ∈ {1, . . . , ν} such that deg(hi) = indOF

(P) − 1.
Finally, we assume (A2) and show the subideal border basis property. Let

c1, . . . , cµ ∈ K satisfy c1t1fα1
+ · · · + cµtµfαµ

∈ I ∩ J . Then either f = c1t1fα1
+

· · · + cµtµfαµ
equals the zero polynomial or not. In the latter case we apply (A2)

and obtain a representation f = h1g1+· · ·+hνgν with h1, . . . , hν ∈ P . Since f 6= 0,
we have max{deg(hi) | i ∈ {1, . . . , ν}, higi 6= 0} ≥ 0. But indOF

(P) − 1 = −1 is
in contradiction to the second part of (A2). Hence we must have f = 0. Thus
I ∩ J ∩ 〈OF 〉K = 0, i.e. the set G is an OF -subideal border basis of I . �

Definition 3.7. In the setting of the algorithm, let G = (g1, . . . , gν). Then the
polynomial

NROF ,G(P) = c1t1fα1
+ · · · + cµtµfαµ

is called the normal remainder of the representation P = (p1f1, . . . , pmfm) of f
with respect to G .

Clearly, the normal remainder depends on the choice of the representation P .
It has the following application.

Corollary 3.8. In the setting of the algorithm, the residue classes of the elements

of OF generate the image of the ideal J in P/〈G〉 as a K -vector space.

In other words, the residue class of every polynomial f ∈ J can be represented

as a K -linear combination of the residue classes {t̄1f̄α1
, . . . , t̄µf̄αµ

} . Indeed, such

a representation can be found by computing the normal remainder NROF ,G(P) for

G = (g1, . . . , gν) and the representation P = (p1f1, . . . , pmfm) of f = p1f1 + · · · +
pmfm .

Proof. By the algorithm, every f ∈ J can be represented in the form f = h1g1 +
· · · + hνgν + c1t1fα1

+ · · · + cµtµfαµ
, where h1, . . . , hν ∈ P and c1, . . . , cµ ∈ K .

Forming residue classes modulo 〈G〉 yields the claim. �

Our last corollary provides another motivation for the name “subideal border
basis”.

Corollary 3.9. In the setting of the algorithm, let G be an OF -subideal border

basis of an ideal I ⊂ P . Then G generates the ideal I ∩ J .

Proof. By definition, we have 〈g1, . . . , gν〉 ⊆ I∩J . To prove the converse inclusion,
let f ∈ I∩J . Using the Subideal Border Division Algorithm, the polynomial f can
be expanded as f = h1g1+· · ·+hνgν+c1t1fα1

+· · ·+cµtµfαµ
, where h1, . . . , hν ∈ P

and c1, . . . , cµ ∈ K . This implies the equality of residue classes 0 = f̄ = c1t̄1f̄α1
+

· · · + cµt̄µf̄αµ
in P/I . By assumption, the residue classes t̄1f̄α1

, . . . , t̄µf̄αµ
form a

K -vector space basis of (I + J)/I . Hence c1 = · · · = cµ = 0, and the expansion
of f yields f = h1g1 + · · · + hνgν ∈ 〈G〉 . �
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4. The Subideal Version of the BM-Algorithm

Let K be a field, let P = K[x1, . . . , xn] be the polynomial ring in n indetermi-
nates over K , equipped with the standard grading, and let Tn be the monoid
of terms in P . Given a finite set of points X = {p1, . . . , ps} ⊆ Kn , we let
eval : P −→ Ks be the evaluation map eval(f) = (f(p1), . . . , f(ps)) associated
to X . It is easy to adjust the Buchberger-Möller Algorithm (BM-Algorithm) so
that it computes a border basis of the vanishing ideal

IX = 〈f ∈ P | f(p1) = · · · = f(ps) = 0〉 = ker(eval) ⊆ P

of X . Since we use a version which differs slightly from the standard formulation
(see for instance [4] or [10], Thm. 6.3.10), let us briefly recall its main steps.

Algorithm 4.1. (BM-Algorithm for Border Bases)
Let X = {p1, . . . , ps} ⊆ Kn be a set of points given by their coordinates, and let σ
be a degree compatible term ordering on Tn . The following instructions define an

algorithm which computes the order ideal Oσ(I) = Tn \ LTσ(IX) and the Oσ(IX)-
border basis G of IX .

B1 Let d = 0 , O = {1} , G = ∅ , and M = (1, . . . , 1)tr ∈ Mats,1(K) .
B2 Increase d by one and let L = [t1, . . . , tℓ] be the list of all terms of degree d

in ∂O , ordered decreasingly w.r.t. σ . If L = ∅ , return (O, G) and stop.

B3 Form the matrix A = (eval(t1) | · · · | eval(tℓ) | M) and compute a matrix B
whose rows are a basis of the kernel of A .

B4 Reduce B to a matrix C = (cij) ∈ Matk,ℓ+m(K) in row echelon form.

B5 For all j ∈ {1, . . . , ℓ} such that there exists an i ∈ {1, . . . , k} with pivot

index ν(i) = j , append the polynomial

tj +
ℓ∑

j′=j+1

cij′ tj′ +
ℓ+m∑

j′=ℓ+1

cij′uj′

to the list G , where uj′ is the (j′ − ℓ)th element of O .

B6 For all j = ℓ, ℓ − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O , append the column

eval(tj) as a new first column to M , and continue with step B2.

The proof of this modified version is simply obtained by combining all the it-
erations of the usual BM-Algorithm corresponding to terms of degree d into one
“block”. The fact that we put the terms of degree d in ∂O into L in step B2 effects
the computation of the entire border basis, rather than just the reduced σ -Gröbner
basis of IX (see [5], Thm. 3.3). A further elaboration is beyond the scope of the
present paper and is left to the interested reader.

Given X and a polynomial ideal J = 〈F 〉 with F = {f1, . . . , fm} ⊂ P \ {0} ,
we know that the vanishing ideal IX has an Oσ(I)F -subideal border basis. The
following generalization of the BM-algorithm computes this subideal border basis.

Algorithm 4.2. (Subideal Version of the BM-Algorithm)
Let X = {p1, . . . , ps} ⊆ Kn be a set of points given by their coordinates, let σ be

a degree compatible term ordering, and let F = {f1, . . . , fm} ⊂ P \ {0} be a set

of polynomials which generate an ideal J = 〈F 〉 . The following instructions define

an algorithm which computes an F -order ideal Oσ(I)F and the Oσ(I)F -subideal

border basis G of IX .
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S1 Let d = min{deg(f1), . . . , deg(fm)} − 1 , OF = ∅ , G = ∅ , and M ∈
Mats,0(K) .

S2 Increase d by one. Let L = [t1fα1
, . . . , tℓfαℓ

] be the list of all F -terms of

degree d in F ∪∂OF , with their leading terms ordered decreasingly w.r.t. σ .

If then L = ∅ and d ≥ max{deg(f1), . . . , deg(fm)} , return (OF , G) and

stop.

S3 Form the matrix A = (eval(t1fα1
) | · · · | eval(tℓfαℓ

) | M) and compute a

matrix B whose rows are a basis of the kernel of A .

S4 Reduce B to a matrix C = (cij) ∈ Matk,ℓ+m(K) in reduced row echelon

form.

S5 For all j ∈ {1, . . . , ℓ} such that there exists an i ∈ {1, . . . , k} with pivot

index ν(i) = j , append the polynomial

tjfαj
+

ℓ∑

j′=j+1

cij′ tj′fαj′
+

ℓ+m∑

j′=ℓ+1

cij′uj′

to the list G , where uj′ is the (j′ − ℓ)th element of OF .

S6 For all j = ℓ, ℓ − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the F -term tjfαj
as a new first element to OF , append

the column eval(tjfαj
) as a new first column to M , and continue with

step S2.

Proof. First we show finiteness. When a new degree is started in step S2, the
matrix M has m = #OF columns where OF is the current list of F -terms. In
step S6 we enlarge M by new first columns which are linearly independent of the
other columns. This can happen only finitely many times. Eventually we arrive at a
situation where all new columns eval(tifαi

) of A in step S3 are linearly dependent
on the previous columns, and therefore the corresponding column of C contains a
pivot element. Consequently, no elements are appended to OF in that degree and
we get L = ∅ in the next degree. Hence the algorithm stops.

Now we show correctness. The columns of A are the evaluation vectors of F -
terms whose leading terms are ordered decreasingly w.r.t. σ . A row (ci1, . . . , ci ℓ+m)
of C corresponds to a linear combination of these F -terms whose evaluation vector
is zero. Let g1, . . . , gk be the polynomials given by these linear combinations of
F -terms. Clearly, we have gi ∈ IX ∩ J .

The evaluation vectors of the F -terms which are put into OF in step S6 are
linearly independent of the evaluation vectors of the F -terms in the previous set OF

since there is no linear relation leading to a pivot element in the corresponding
column of C . Inductively it follows that the evaluation vectors of the F -terms
in OF are always linearly independent. Henceforth the pivot elements of C are
always in the “new” columns and the polynomials gi have degree d . By the way
the algorithm proceeds, every F -term in the border of the final set OF appears in
exactly one on the elements of G . All the other summands of a polynomial gi are
in OF . Hence the final set G is an OF -subideal border prebasis.

Furthermore, every F -term is either in OF or it is a multiple of an F -term
in ∂OF (cf. Prop. 3.4.5). In the latter case, its evaluation vector can be written
as a linear combination of the evaluation vectors of the elements of OF . Thus
the evaluation vectors of the elements of OF generate the space of all evaluation
vectors of F -terms. Since they are linearly independent, they form a K -basis of
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that space. Now we use the facts that evaluation yields an isomorphism of K -vector
spaces eval : P/I −→ Ks and that the residue classes of the F -terms generate the
K -vector subspace (I + J)/I of P/I to conclude that the residue classes of the
F -terms in the final set OF form a K -basis of (I + J)/I . �

Let us illustrate this algorithm by an example.

Example 4.3. In the polynomial ring P = Q[x, y, z] , we consider the ideal J = 〈F 〉
with F = {f1, f2} given by f1 = x2 − 1 and f2 = y − z . Let σ = DegRevLex.

We want to compute an OF -subideal border basis of the vanishing ideal of the
point set X = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)} . Notice that the first point of X

lies on Z(f1, f2), so that we should expect an F -order ideal consisting of three
F -terms. Let us follow the steps of the algorithm. (We only list those steps in
which something happens.)

S2 Let d = 1 and L = [y − z] .
S3 Form A = (0, 0, 1,−1)tr and compute B = (0). (Thus C = B .)
S6 Let OF = {y − z} and M = (0, 0, 1,−1)tr .
S2 Let d = 2 and L = [x2 − 1, x(y − z), y(y − z), z(y − z)] .

S3 Compute A =




0 0 0 0 0
−1 0 0 0 0
0 1 1 0 1
0 −1 0 −1 −1


 and B =

(
0 1 0 0 −1
0 0 1 1 −1

)
.

(Thus C = B .)
S5 The pivot indices ν(1) = 2 and ν(2) = 3 yield the set G = {g1, g2} with

g1 = x(y − z) − (y − z) and g2 = y(y − z) + z(y − z) − (y − z).

S6 We obtain OF = {x2 − 1, z(y − z), y − z} and M =




0 0 0
−1 0 0
0 0 1
0 −1 −1


 .

S2 Let d = 3. We have L = [x(x2 − 1), y(x2 − 1), z(x2 − 1), xz(y− z), yz(y−
z), z2(y − z)] .

S3 Find A =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 −1 0 −1 −1




and B =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 0




. (Thus C = B .)

S5 Here we obtain G = {g1, . . . , g8} where g3 = x(x2 − 1), g4 = y(x2 − 1),
g5 = z(x2 − 1), g6 = xz(y − z) − z(y − z), g7 = yz(y − z), and finally
g8 = z2(y − z) − z(y − z).

S6 There are no new non-pivot indices. Hence O and M are not changed.
S2 We get L = ∅ and the algorithm stops.

The result is the F -order ideal OF = {x2 − 1, z(y − z), y − z} and the OF -
subideal border basis G = {g1, . . . , g8} of IX .
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5. The Subideal Version of the AVI-Algorithm

From here on we work in the polynomial ring P = R[x1, . . . , xn] over the field of
real numbers. We let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ Rn be a finite set of points and
ε > τ > 0 two threshold numbers. (The number ε can be thought of as a measure
for error tolerance of the input data points X and τ is used as a “minimum size”
for acceptable leading coefficients of unitary polynomials.)

Let us point out the following notational convention we are using: the “usual”
norm of a polynomial f ∈ P is the Euclidean norm of its coefficient vector and is
denoted by ‖f‖ . By “unitary” we mean ‖f‖ = 1. In contrast, by ‖f‖1 we mean
the sum of the absolute values of the coefficients of f , and the term “‖ ‖1 -unitary”
is to be interpreted accordingly.

Furthermore, by eval : P −→ Rs we denote the evaluation map eval(f) =
(f(p1), . . . , f(ps)) associated to X . For the convenience of the reader, we briefly
recall the basic structure of the Approximate Vanishing Ideal Algorithm (AVI-
algorithm) from [5]. Notice that we skip several technical details and explicit error
estimates. The goal of the AVI-algorithm is to compute an approximate border
basis, a notion that is defined as follows.

Definition 5.1. Let O = {t1, . . . , tµ} ⊆ Tn be an order ideal of terms, let ∂O =
{b1, . . . , bν} be its border, and let G = {g1, . . . , gν} be an O -border prebasis of
the ideal I = 〈g1, . . . , gν〉 in P . Recall that this means that gj is of the form
gj = bj −

∑µ
i=1

cijti with cij ∈ R .
For every pair (i, j) such that bi, bj are neighbors in ∂O , we compute the normal

remainder S′
ij = NRO,G(Sij) of the S-polynomial of gi and gj with respect to G .

We say that G is an ε-approximate border basis of the ideal I = 〈G〉 if we have
‖Sij‖ < ε for all such pairs (i, j).

Moreover, the AVI-algorithm uses the concepts of approximate vanishing, ap-
proximate kernel and stabilized reduced row echelon form, for which we refer to [5],
Sect. 2 and 3.

Algorithm 5.2. (AVI-Algorithm)
Let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ Rn be a set of points as above, and let σ be a

degree compatible term ordering. Consider the following sequence of instructions.

A1 Start with lists G = ∅ , O = [1] , a matrix M = (1, . . . , 1)tr ∈ Mats,1(R) ,
and d = 0 .

A2 Increase d by one and let L = [t1, . . . , tℓ] be the list of all terms of degree d
in ∂O , ordered decreasingly w.r.t. σ . If L = ∅ , return the pair (O, G) and

stop.

A3 Form the matrix A = (eval(t1), . . . , eval(tℓ),M) and calculate a matrix B
whose rows are an ONB of the approximate kernel apker(A, ε) of A .

A4 Compute the stabilized reduced row echelon form of B with respect to the

given τ . The result is a matrix C = (cij) ∈ Matk,ℓ+m(R) such that cij = 0
for j < ν(i) . Here ν(i) denotes the column index of the pivot element in

the ith row of C .

A5 For all j ∈ {1, . . . , ℓ} such that there exists an i ∈ {1, . . . , k} with ν(i) = j ,

append the polynomial

cijtj +
ℓ∑

j′=j+1

cij′ tj′ +
ℓ+m∑

j′=ℓ+1

cij′uj′
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to the list G , where uj′ is the (j′ − ℓ)th element of O .

A6 For all j = ℓ, ℓ − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the term tj as a new first element to O and append the

column eval(tj) as a new first column to M .

A7 Calculate a matrix B whose rows are an ONB of apker(M, ε) .
A8 Repeat steps A4 – A7 until B is empty. Then continue with step A2.

This is an algorithm which computes a pair (O, G) such that the following properties

hold for the bounds δ and η given in [5], Thm. 3.3.

(a) The set G consists of unitary polynomials which vanish δ -approximately at

the points of X .

(b) The set O = {t1, . . . , tµ} contains an order ideal of terms such that there

is no unitary polynomial in 〈O〉K which vanishes ε-approximately on X .

(c) The set G̃ = {(1/ LCσ(g)) g | g ∈ G} is an O -border prebasis.

(d) The set G̃ is an η -approximate border basis.

Our main algorithm combines the techniques of this AVI-algorithm with the
subideal version of the BM-algorithm presented above (see Alg. 4.2). The result is
an algorithm which computes an approximate subideal border basis. This notion
is defined as follows.

Definition 5.3. Let OF = {t1fα1
, . . . , tµfαµ

} be an F -order ideal, let ∂OF =
{b1fβ1

, . . . , bνfβν
} be its border, and let G = {g1, . . . , gν} be an OF -subideal

border prebasis. Recall that this means that gj is of the form gj = bjfβj
−∑µ

i=1
cijtifαi

with cij ∈ R .
For every pair (i, j) such that bi, bj are neighbors in ∂OF , i.e. such that βi = βj

and bi, bj are neighbors in the usual sense, we compute the normal remainder
S′

ij = NROF ,G(Sij) of the S-polynomial of gi and gj with respect to G . We say

that G is an ε-approximate OF -subideal border basis if we have ‖Sij‖ < ε for all
such pairs (i, j).

Now we are ready to formulate and proof the main result of this section.

Algorithm 5.4. (Subideal Version of the AVI-Algorithm)
Let X = {p1, . . . , ps} ⊂ [−1, 1]n ⊂ Rn be a set of points as above, let σ be a

degree compatible term ordering, and let F = {f1, . . . , fm} ⊂ P \ {0} be a set of

‖ ‖1 -unitary polynomials which generate an ideal J = 〈F 〉 . Consider the following

sequence of instructions.

SA1 Let d = min{deg(f1), . . . , deg(fm)} − 1 , OF = ∅ , G = ∅ , and M ∈
Mats,0(K) .

SA2 Increase d by one. Let L = [t1fα1
, . . . , tℓfαℓ

] be the list of all F -terms of

degree d in F ∪∂OF , with their leading terms ordered decreasingly w.r.t. σ .

If then L = ∅ and d ≥ max{deg(f1), . . . , deg(fm)} , return (OF , G) and

stop.

SA3 Form the matrix A = (eval(t1fα1
) | · · · | eval(tℓfαℓ

) | M) and compute a

matrix B whose rows are an ONB of the approximate kernel of A .

SA4 Compute the stabilized reduced row echelon form of B with respect to the

given τ . The result is a matrix C = (cij) ∈ Matk,ℓ+m(R) such that cij = 0
for j < ν(i) . Here ν(i) denotes the column index of the pivot element in

the ith row of C .
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SA5 For all j ∈ {1, . . . , ℓ} such that there exists an i ∈ {1, . . . , k} with ν(i) = j ,

append the polynomial

tjfαj
+

ℓ∑

j′=j+1

cij′ tj′fαj′
+

ℓ+m∑

j′=ℓ+1

cij′uj′

to the list G , where uj′ is the (j′ − ℓ)th element of OF .

SA6 For all j = ℓ, ℓ − 1, . . . , 1 such that the jth column of C contains no pivot

element, append the F -term tjfαj
as a new first element to OF , append

the column eval(tjfαj
) as a new first column to M .

SA7 Calculate a matrix B whose rows are an ONB of apker(M, ε) .
SA8 Repeat steps SA4 – SA7 until B is empty. Then continue with step A2.

This is an algorithm which computes a pair (OF , G) with the following properties:

(a) The set G consists of unitary polynomials which vanish δ -approximately at

the points of X . Here we can use δ = ε
√

ν + τν(µ + ν)
√

s .

(b) The set OF contains an F -order ideal such that there is no unitary poly-

nomial in 〈OF 〉K which vanishes ε-approximately on X .

(c) The set G̃ = {(1/ LCσ(g)) g | g ∈ G} is an OF -subideal border prebasis.

(d) The set G̃ is an η -approximate subideal border basis for η = 2δ+2νδ2/γε+
2νδ

√
s/ε . Here γ denotes the smallest absolute value of the border F -term

coefficient of one the polynomials gi .

Proof. Large parts of this proof correspond exactly to the proof of the usual AVI-
algorithm (see Thm. 3.2 in [5]). Therefore we will mainly point of the additional
arguments necessary to show the subideal version. The finiteness proof is identical
to the finiteness proof in the subideal version of the BM-algorithm 4.2.

For the proof of (a), we can proceed exactly as in the case of the usual AVI-
algorithm. There is only one point where we have to provide a further argument:
the norm of the evaluation vector of an F -term is ≤ √

s . To see this, we let tifj

be an F -term and we write tifj =
∑

k ck t̃k with ck ∈ R and t̃k ∈ Tn . Since fj

is ‖ ‖1 -unitary and X ∈ [−1, 1]n , we have ‖ eval(tifj)‖ ≤ ∑
k |ck| ‖ eval(t̃k)‖ ≤

‖fj‖1

√
s =

√
s .

Next we show (b). The columns of the final matrix M are precisely the eval-
uation vectors of the F -terms in OF . After the loop in steps SA4 – SA8, we
have apker(M) = {0} . Hence no unitary polynomial in 〈OF 〉K has an evalua-
tion vector which is smaller than ε . It remains to show that OF is an F -order
ideal. Suppose that tifj ∈ OF and that xktifj is put into OF . We have to prove
that every F -term t̃ fj such that xℓt̃fj = xktifj is also contained in OF . In this
case we have ti = xℓt

′ and we want to show xkt′fj ∈ OF . For a contradiction,
suppose that xkt′fj is the border F -term of some g ∈ G . Since the evaluation
vector of xℓxkt′fj = xktifj is not larger than eval(xkt′fj), also this F -term would
be detected by the loop of steps SA4 – SA8 as the border F -term of an element
of G . This contradicts xktifj ∈ OF .

To prove (c), it suffices to note that steps SA2 and SA5 make sure that the
elements of G have the necessary form. Finally, claim (d) follows in exactly the
same way as part (d) of [5], Thm. 3.3. �

Let us follow the steps of this algorithm in a concrete case which is a slightly
perturbed version of Example 4.3.
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Example 5.5. In the ring P = R[x, y, z] we consider the ideal J = 〈f1, f2〉 gen-
erated by the ‖ ‖1 -unitary polynomials f1 = 0.5 y − 0.5 z and f2 = 0.5 x2 − 0.5.
Let σ = DegRevLex, let ε = 0.03, and let τ = 0.001. We want to compute
an approximate subideal border basis vanishing approximately at the points of
X = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0.98), (0.98, 0, 1).

Notice that the first point of X is contained in Z(f1, f2) and that the last two
points of X differ by ≤ ε from one point (1, 0, 1). Hence the approximate subideal
border basis should correspond to three points outside Z(J), and therefore we
should expect to get an F -order ideal consisting of three F -terms. We follow the
steps of the subideal version of the AVI-algorithm 5.4.

SA2 Let d = 1 and L = [0.5 y − 0.5 z] .
SA3 We compute A = (0, 0, 0.5,−0.49,−0.51)tr and B = (0). (Thus C = B .)
SA6 Let O = {f1} and M = (0, 0, 0.5,−0.49,−0.5)tr .
SA2 Let d = 2 and L = [f2, xf1, yf1, zf1] .

SA3 We compute A =




0 0 0 0 0
−0.5 0 0 0 0

0 0.5 0.5 0 0.5
0 −0.49 0 −0.4802 −0.49

−0.0198 −0.49 0 −0.5 −0.5




and

B = apker(A, ε) =

(
0.0004 0.6755 −0.5089 −0.5068 −0.1667

0 −0.3812 −0.3735 −0.3812 0.7548

)
.

SA4 The stabilized reduced row echelon form of B is

C =

(
0 0.3812 0.3735 0.3812 −0.7548
0 0 0.5754 0.5811 −0.5754

)
.

SA5 We get G = {g1, g2} with g1 = 0.3812 xf1 + 0.3735 yf1 + 0.3812 zf1 −
0.7548f1 and g2 = 0.5754 yf1 + 0.5811 zf1 − 0.5754f1 .

SA6 We find O = {f2, zf1, f1} and M =




0 −0.5 0 0 0
0 0 0 −0.4802 −0.5
0 0 0.5 −0.49 −0.5




tr

.

SA2 Now let d = 3 and L = [xf2, yf2, zf2, xzf1, yzf1, z2f1] .

SA3 A =




0 0 0 0 0 0 0 0 0
0 −0.5 −0.5 0 0 0 −0.5 0 0
0 0 0 0 0 0 0 0 0.5
0 0 0 −0.48 0 −0.47 0 −0.48 −0.49

−0.02 0 −0.02 −0.49 0 −0.5 −0.02 −0.5 −0.5




and B, C are matrices of rank 6 which yield six further approximate subideal
border basis elements.

SA5 We obtain G = {g1, . . . , g8} with g3 = xf2 − 0.02 zf1 , g4 = 0.71 yf2 −
0.71 f2 + 0.01 zf1 , g5 = 0.71 zf2 − 0.71 f2 , g6 = 0.71 xzf1 − 0.7 zf1 , g7 =
yzf1 , and g8 = 0.71 z2f1 − 0.7 zf1 .

SA5 Since there is no new non-pivot row index, OF and M are not changed.
SA2 In degree d = 4 we find L = ∅ and the algorithm stops.

Hence the result is the F -order ideal O = {x2 − 1, z(y − z), y − z} and the
approximate OF -subideal border basis G = {g1, . . . , g8} . This confirms that there
are three approximate zeros of G outside the two lines Z(f1, f2).
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6. An Industrial Application

In this section we apply the subideal version of the AVI-algorithm to an actual
industrial problem which has been studied in the Algebraic Oil Research Project
(see [2]). Viewed from a more general perspective, this application shows how one
can carry out the suggestion made in the introduction, namely to use the subideal
version of the AVI-algorithm to introduce knowledge about the nature of a physical
system into the modeling process.

Suppose that a multi-zone well consists of two zones A and B . During so-called
commingled production, the two zones are interacting and influence each other. We
have at our disposal time series of measured data such as pressures, temperatures,
total production and valve positions. Moreover, during so-called test phases we can
obtain time series of these data when only one of the two zones is producing. The
following figure gives a schematic representation of the physical system and the
measured variables.

Figure 1. Schematic representation of a two-zone well

The measured total production does not equal the sum of the individual pro-
ductions calculated from the test data. The production allocation problem is to
determine the contributions of the two zones to the total production when they are
producing together. Here the contributions cA, cB of the zones are defined to be
the part of the total production pAB passing through the corresponding down-hole
valves. Therefore we have pAB = cA + cB , but there is no way of measuring cA

and cB directly. In this sense the production allocation problem is to determine
the contributions cA, cB from the measured data.

Let the indeterminate xA represent the valve position of zone A and xB the
valve position of zone B . Here xi = 0 means that the valve is closed and xi =
1 represents a fully opened valve position. Clearly, if valve A is closed, i.e. for
points in the zero set Z(〈xA〉), there is no contribution from zone A , and likewise
for B . By Hilbert’s Nullstellensatz, this means that the polynomial pA modeling
the production of zone A should be computed by using the subideal version of the
AVI-algorithm with J = 〈xA〉 . Similarly, we want to force pB ∈ 〈xB〉 .

Now we model the total production pAB in the following way. We write pAB =
pA + pB + qAB where qAB is a polynomial which measures the interaction of the
two zones. To compute qAB , we write it in the form

qAB = fA · (xB · pA) + fB · (xA · pB)
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Notice that such a decomposition can be computed via the subideal version of the
AVI-algorithm by applying it to the ideal J = 〈xBpA, xApB〉 . The result will be a
representation pAB = pA + pB + fAxBpA + fBxApB . Here we observe that xA = 0
implies pAB = pB because pA ∈ 〈xA〉 . Analogously, we see that xB = 0 implies
pAB = pA , in accordance with the physical situation.

The endresult of these computations is that the contributions of the two zones
during commingled production can be computed from the equalities cA = (1 +
fAxB)pA and cB = (1 + fBxA)pB . At the same time we gain a detailed insight
into the nature of the interactions by examining the structure of the polynomials
fA, fB .
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