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From Oil Fields to Hilbert Schemes
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Abstract New techniques for dealing with problems of numerical stability in com-
putations involving multivariate polynomials allow a new approach to real world
problems. Using a modeling problem for the optimization of oil production as a
motivation, we present several recent developments involving border bases of poly-
nomial ideals. After recalling the foundations of border basis theory in the exact
case, we present a number of approximate techniques such as the eigenvalue method
for polynomial system solving, the AVI algorithm for computing approximate bor-
der bases, and the SOI algorithm for computing stable order ideals. To get a deeper
understanding for the algebra underlying this approximate world, we present re-
cent advances concerning border basis and Gröbner basis schemes. They are open
subschemes of Hilbert schemes and parametrize flat families of border bases and
Gröbner bases. For the reader it will be a long, tortuous, sometimes dangerous, and
hopefully fascinating journey from oil fields to Hilbert schemes.
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Introduction

Why did the chicken cross the road?
To boldly go where no chicken has gone before.

(James Tiberius Kirk)

A Bridge Between Two Worlds. Oil fields and Hilbert schemes are connected
to very different types of ingredients for algorithmic and algebraic manipulation:
continuous and discrete data. This apparent dichotomy occurs already in a single
polynomial over the real number field. It consists of a discrete part, the support, and
a continuous part, the set of its coefficients. The support is well understood and the
source of a large amount of literature in classical algebra. On the other hand, if the
coefficients are not exact real numbers but approximate data, the very notion of a
polynomial and all algebraic structures classically derived from it (such as ideals,
free resolutions, Hilbert functions, etc.) tend to acquire a blurred meaning.

An easy example is the following. Consider three distinct non-aligned points in
the affine plane over the reals. First of all, if the coordinates are not exact, it is not
even clear what we mean by “non-aligned”; a better description might be “far from
aligned”. The vanishing ideal of the three points is generated by three quadratic
polynomials. However, if we change some of the coefficients of these polynomials
by a small amount, almost surely we get the unit ideal, since the first two conics still
intersect in four points, but the third will almost certainly miss all of them.

How can we cope with this situation? And why should we? The first, easy an-
swer is that approximate coefficients are virtually inevitable when we deal with real
world problems. In this paper we concentrate on a specific problem where vectors
with approximate components encode measurements of physical quantities taken in
an oil field. Based on actual industrial problems in the field of oil production, we
want to popularize the idea that good models of many physical phenomena can be
constructed using a bottom-up process. The heart of this method is to derive mathe-
matical models by interpolating measured values on a finite set of points. This task
can be solved if we know the vanishing ideal of the point set and a suitable vector
space basis of its coordinate ring.
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This leads us to the next question. Given a zero-dimensional ideal I in a polyno-
mial ring over the reals, if we assume that the coefficients of the generating polyno-
mials are inexact, is it still an ideal? What is the best way of describing this situation?
The fact that Gröbner bases are not suitable for computations with inexact data has
long been well-known to numerical analysts (see [30]). This is due to the rigid struc-
ture imposed by term orderings. Other objects, called border bases, behave better.
They have emerged as good candidates to complement, and in many cases substitute
for, Gröbner bases (see [17], [21], [22], [26], [29]). But possibly the most important
breakthrough is the recent discovery of a link between border bases and Hilbert
schemes. We believe that it may provide a solid mathematical foundation for this
new emerging field which tries to combine approximate methods from numerical
analysis with exact methods from commutative algebra and algebraic geometry.

You got to be careful if you don’t know where you’re going
because you might not get there.

(Yogi Berra)

Our Itinerary. In the first part of the introduction we have already suggested the
existence of an unexpected bridge between oil fields and Hilbert schemes. Let us
now be more specific about the content of the paper and indicate how it tries to build
that bridge. Section 1 provides an introduction to one of the main problems arising
in oil fields, namely the control of the production. Since we assume that our typical
reader is not an expert geologist, we provide some background about the physical
nature of an oil reservoir, illustrate the main production problem, and describe a
new mathematical approach to solve it. We call it “new”, since in our opinion it is
very different from the standard view on how to use mathematical models in such a
context.

Border bases, the main technical tool we use later, are described in Section 2.
This material is mainly taken from [21], Section 6.4 and [17]. We describe the defi-
nition and the main properties of border bases and compare them to Gröbner bases
using suitable examples. Several important results about border bases are described,
in particular their characterization via the commutativity of the formal multiplica-
tion matrices due to B. Mourrain (see [26]). A brief excursion is taken into the realm
of syzygies, their relation to the border web, and their importance in another funda-
mental characterization of border bases based on the work of H. Stetter (see [30]).

A useful aspect of border basis theory is that we try to specify a “nice” vector
space basis of the quotient ring R[x1, . . . ,xn]/I . This sort of basis plays a funda-
mental role in the problem of solving polynomial systems. Notwithstanding the fact
that solving polynomial systems is not a main topic in our presentation, we decided
to use Section 3 to give a description of a technique which comes from numerical
analysis and uses linear algebra methods, in particular eigenvalues and eigenvectors
(see [4], [5], and [9]). The importance of a special kind of matrices, called non-
derogatory matrices, is illustrated by Example 1.3.9 and also used in [19] in the
context of border basis theory.

Sections 4 and 5 are the computational heart of the paper. They describe two
somehow complementary algorithmic approaches to the problem of computing the
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“approximate vanishing ideal” of a finite set of approximate (empirical) points and a
basis of the corresponding quotient ring. In particular, the first part of Section 4 deals
with the AVI algorithm and is based on the presentation in [14]. The AVI algorithm
makes extensive use of the singular value decomposition (SVD) described in Sub-
section 4.A and of the stable reduced row echelon form explained in Subsection 4.B.
Its main outputs are an order ideal of monomials O and an approximate O -border
basis, a concept introduced in Subsection 4.C. The AVI algorithm is then applied
in Subsection 4.D to the concrete construction of polynomial models describing the
production of a two-zone oil well.

Section 5 deals with the SOI algorithm which treats the following problem: given
a finite set of points X whose coordinates are given with limited precision, find, if
there exists one, an order ideal O such that the residue classes of its elements form
a stable basis of the quotient ring P/I (X) where P = R[x1, . . . ,xn] and I (X) is
the vanishing ideal of X . Here stable means that the residue classes of the elements
in O form a basis of the quotient ring for every small perturbation of the set X .
This section summarizes the results of [2]. In Subsection 5.B we describe several
easy, but illustrative examples and compare the behaviour of the SOI and the AVI
algorithm in these cases. The topic studied in Sections 4 and 5 is an active area of
research, and several further approaches have been suggested (see for instance [10]
and [25]).

Having done all the dirty work (oil fields are not places to be dressed formally),
it is time to leave the sedimentary rocks and to look at the problems concerning
approximate data from a more general perspective. Polynomials with empirical co-
efficients can be viewed as families of polynomials. So, the next question is whether
we can describe families of polynomial ideals algebraically. The answer is yes! The
possibility of parametrizing families of schemes by one big scheme is a remarkable
feature of algebraic geometry. Hilbert schemes are the most widely known instance
of this phenomenon, and consequently they have been studied thoroughly. More-
over, the Hilbert scheme of all zero-dimensional ideals in P of colength s can be
covered by affine open subschemes which parametrize all subschemes Spec(P/I)
of the affine space An

K with the property that P/I has a fixed vector space basis. It
is interesting to note that the construction of such subschemes is performed using
border bases (see for instance [15], [16], and [24]). Also Gröbner bases can be used,
since they provide tools for constructing suitable stratifications of Hilbert schemes.

Section 6 is devoted to the explanation of these ideas. Its main sources are the
two papers [22] and [28]. In Subsection 6.A we start with an informal explanation of
two examples (see Examples 1.6.1 and 1.6.2) which are very easy but nevertheless
suitable to illustrate the topic. Then we move to Subsection 6.B where we introduce
border basis schemes and their associated border basis families. We show the diffi-
culties of generalizing one of the fundamental tools of Gröbner basis theory to the
border basis setting, namely the flat deformation to the leading term ideal. Indeed,
the problem is only partially solved and still open in general. The final part of the
subsection contains Example 1.6.14 where explicit defining equations are given for
one particular border basis scheme, and the connection to the approximate border
bases of Section 4 is made.



1 From Oil Fields to Hilbert Schemes 5

The final Subsection 6.C is devoted to Gröbner basis schemes and summarizes
the presentation in [28]. It is shown that Gröbner basis schemes and their associ-
ated universal families can be viewed as weighted projective schemes (see Theo-
rem 1.6.19), a fact that constitutes a remarkable difference between Gröbner and
border basis schemes. A comparison between the two types of schemes is given
by Theorem 1.6.20 and Corollary 1.6.21, and their equality is examined in Propo-
sition 1.6.24. Throughout the section we highlight the connection between border
basis schemes, Gröbner basis schemes, and Hilbert schemes.

At that point the journey from oil fields to Hilbert schemes is over. To get you
started with this itinerary, let us point out that, unless specifically stated other-
wise, our notation follows the two books [20] and [21]. The algorithms we discuss
have been implemented in the computer algebra system CoCoA(see [8]) and in the
ApCoCoA library (see [3]).

1.1 A Problem Arising in Industrial Mathematics

Are oil fields commutative?
Are they infinite?

What is their characteristic?
Are they stable?

What are their bases?
(from “The Book of Mathematical Geology”)

1.1.A. Oil Fields, Gas Fields and Drilling Wells. Research in relation to oil reser-
voirs faces many times the same kind of difficulty: the true physical state of an
intact, working reservoir cannot be observed. Neither in an experiment of thought,
for instance a simulation, nor in a physical experiment using a piece of source rock
in a laboratory, the reservoir circumstances can be imitated exactly. This means that
the physical laws, i.e. the relations between the physical quantities, are not known
under actual reservoir circumstances.

To shed some additional light upon this problem, let us have a brief look at oil
field formation and exploitation. The uppermost crust of the earth in oil and gas-
containing areas is composed of sedimentary rock layers. Since the densities of oil
and gas are smaller than the density of water, buoyancy forces them to flow upward
through small pores in the reservoir rock. When they encounter a trap, e.g. a dome
or an anticline, they are stopped and concentrated according to their density: the gas
is on top and forms the free gas cap, the oil goes in the middle, and the (salt) water
is at the bottom. To complete the trap, a caprock, that is a seal which does not allow
fluids to flow through it, must overlie the reservoir rock.

Early drillings had some success because many subsurface traps were leaking.
Only by the early 1900s it became known that traps could be located by mapping
the rock layers and drilling an exploration well to find a new reservoir. If commercial
amounts of oil and gas turn out to be present, a long piece of steel pipe (called the
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production tubing) is lowered into the bore hole and connected to the production
facilities.

In a gas well, gas flows to the surface by itself. There exist some oil wells, early
in the development of an oil field, in which the oil has enough pressure to flow up the
surface. Most oil wells, however, do not have enough pressure and a method called
artificial lift may then be used. This means that gas is injected into the production
tubing of the well. The injected gas mixes with the oil and makes it lighter, thereby
reducing the back pressure of the reservoir. On the surface the fluids are transported
through long pieces of tubing to a large vessel called separator where the three
physical phases – oil, water and gas – are separated.

During the exploitation of a reservoir, the pressure of the fluid still in the reser-
voir drops. This decrease of the reservoir pressure over time is depicted by the de-
cline curve. The shape of the decline curve and the total volume of fluid that can
be produced from a reservoir (which is called the ultimate recovery) depend on the
reservoir drive, the natural energy that pushes the oil or the gas through the sub-
surface and into the inflow region of the well. The ultimate recovery of gas from a
gas reservoir is often about 80% of the gas in the reservoir. Oil reservoirs are far
more variable and less efficient: on average, the ultimate recovery is only 30%. This
leaves 70% of the oil remaining in the pressure depleted reservoir which cannot be
produced anymore.

Thus, on the most abstract level, the problem we want to address is how to in-
crease the ultimate recovery of an oil reservoir.

1.1.B. Production from Multi-Zone Wells. A well may produce from different
parts, called pockets or zones, of an oil reservoir. The total production of such a well
consists of contributions from the different zones. The separate contributions can be
controlled by valves, called the down-hole valves, which determine the production
volume flowing into the well tubing at the locations of the different zones. For such a
multi-zone well, there may be interactions between the zones in the reservoir. Most
certainly, the different contributions will interact with each other when they meet
in the common production tubing of the multi-zone well. This situation is called
commingled production.

In this paper we consider a multi-zone well consisting of two producing and
interacting zones. Like in a single oil well, the common production flows to the
bulk separator where the different phases are separated and the production rates of
the separated phases are measured. Besides the phase productions, measurements
like pressures, temperatures and injected “lift-gas” are collected; down-hole valves
positions are also recorded. A typical set of production variables for a such multi-
zone well is:

1. the opening of the valve through which the oil from the first zone is entering the
multi-zone well; the opening of the valve is measured in percentages: 0% means
that the valve is closed; 100% means that the valve is completely open;

2. the opening of the valve through which the oil from the second zone is entering
the multi-zone well;
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3. the pressure difference over the down-hole valve of the second zone which is a
measure for the inflow from the reservoir into the well at the valve position; if
the valve is closed we assume this value to be zero;

4. the pressure difference over the down-hole valve of the first zone when the valve
in that zone is open; if the valve is closed we assume this value to be zero;

5. the volume of gas produced simultaneously with the oil;
6. the pressure difference between the inflow locations in the production tubing;
7. the pressure difference which drives the oil through the transportation tubing.

One might be tempted to think that the total oil production of a multi-zone well
is the sum of the productions of each zone when producing separately. This is in any
case the current state of the art, where the total production is regressed against the
separate productions, that is the total production is written as a linear combination
of the separate productions. The coefficients in this linear sum are called reconcil-
iation factors. The oil produced by one of the zones may push back the oil which
tries to flow into the well at the other zone. Likewise, the gas which is produced si-
multaneously with the oil may have stimulating or inhibiting effects on the inflow of
the oil with respect to the situation of single zone productions. With reference to the
remarks above, this behavior does not sound very linear. Indeed, in Section 4.D we
will use our algebraic approach in a two-zone well example to demonstrate that the
total production is not a linear combination of the separate productions. We believe
that the reason of the (usually) low ultimate recovery of a multi-zone well is due to
the fact that the interactions among the different producing zones are unknown.

This leads us to a first concretization of the problem we want to study: find a
model for the total production of an oil well which takes the interactions into account
and describes the behavior correctly on longer time scales.

1.1.C. Algebraization of the Production Problem. Before plunging into the cre-
ation of an algebraic setting for the described production problem, let us spend a few
words on why we believe that approximate computational algebra is an appropriate
method to deal with it.

The available data correspond to a finite set of points X in Rn . Their coordinates
are noisy measurements of physical quantities associated with the well: pressures,
oil and gas production, valve positions, etc. These points represent the behavior of
the well under various production conditions. The combination of the contribution
of the individual zones to the total production is a sum which has to be corrected by
taking into account the effect of the interactions. As in many other situations (for
instance, in statistics), the interactions are related to products of the collected data
series. Many of the known physical laws and model equations are of a polynomial
nature. And even if they are not, some elementary insights into the system (e.g. that
the result depends exponentially on a certain data series) allow us to prepare the data
series appropriately (e.g. by computing their logarithms). Consequently, the starting
point for us is the polynomial ring P = R[x1, . . . ,xn] .

In the following we will deal with the case of a two-zone well. The production
situation is depicted schematically in Figure 1.1. The notation ∆P refers to pressure
differences.
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Fig. 1.1 Schematic representation of a two-zone well.

The valves indicated in this figure are used to influence the inflow of the fluids
at the two locations into the production tubing of the well. If a valve is closed, there
is no inflow from the reservoir at the location of the valve. If the valve is open, the
inflow depends on the valve opening and the interactions with the fluids which enter
the well through the other inflow opening. In particular, a valve in open position
does not imply that there is inflow from the reservoir into the well at its location.

Next we try to formulate the problems associated with this production system
more explicitly. Notice that the reservoir is a very special physical system in that it
is not possible to check “how it works” using a computer simulation experiment or a
physical model laboratory experiment. Traditional modeling techniques assume that
equations which describe the flow of the fluids through the reservoir are available.
Their limited success is in our view due to the fact that there is no proper representa-
tion of the interactions occurring in the production situation. Without these, actions
taken to influence the production may have devastating consequences in that the
“wrong” effects are stimulated. It is fair to state that the existing low ultimate recov-
ery rates are to a large extent caused by the fact that the interactions in production
units have not been acknowledged properly.

As a starting point, let us formulate the production problem in intuitive rather
than in precise mathematical terms.
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Problem 1. Assume that no a priori model is available to describe the production
of the two-zone well of Figure 1.1 in terms of measurable physical quantities which
determine the production. Find an algebraic model of the production in terms of the
determining, measurable physical quantities which specifically models the interac-
tions occurring in this production unit.

Now let us phrase this problem using the polynomial ring P =R[x1, . . . ,xn] . The
first step is to associate the indeterminates xi with physical quantities in the produc-
tion problem in the sense that when the indeterminate xi is evaluated at the points
of X , the evaluations are the measurements of the physical quantity associated to xi .
In the sequel we use n = 5 and the following associations, where the physical quan-
tities are the ones referenced in Figure 1.1.

x1 : ∆Pinflow1

x2 : ∆Pinflow2

x3 : Gas production

x4 : ∆Ptub

x5 : ∆Ptransport

Table 1.1 Physical interpretation of the indeterminates.

Note that we have not listed an indeterminate associated to the oil production.
The explanation for this is that the physical quantities listed in the above table may
all be interpreted as driving forces for the oil production. For the pressure differences
∆P this is clear. But it holds also for the gas production. When a large amount of
gas is produced in the deeper parts of the reservoir, it disperses in the fluid mix-
ture, makes it lighter, and in this way stimulates oil production through this lifting
process. Thus the physical quantities listed in the above table may all be viewed as
the causing quantities, or inputs, and the oil production is their effect, or output. So,
basically we make the following crucial assumption.

Assumption. There exists a causal relationship between the production and the
driving forces. Using suitable inputs, this causal relationship is of polynomial na-
ture.

Denoting the production by f , the algebraic translation of the causal relationship
assumption is f ∈ R[x1, . . . ,x5] where the indeterminates xi are labeled as in the
above table. That is, the production is not associated with an indeterminate, but
with a polynomial, and the production measurements are the evaluations of this
polynomial over the set X . Hence the problem statement 1 can be reformulated as
follows.

Problem 2. Find the polynomial f ∈ R[x1, . . . ,x5] , using only the evaluations X of
the quantities xi and the evaluations of f !
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The information registered in the set X refers to the situation where at most
one of the valves is closed. The only possible inflows from the reservoir into the
production tubing of the two-zone well are at the location of Zone 1, or of Zone 2,
or both. Moreover, in all three situations data have been collected at different valve
openings. Furthermore, in order for the data in X to deserve the qualification driving
forces, some pre-processing has been applied: with reference to Figure 1.1, if valve1
is closed, it may very well be that the pressure difference ∆Pinflow1 is not zero, but it
does not have the meaning of a driving force over the valve opening because there
is no flow over the valve. Hence in the data set X , we set ∆Pinflow1 to zero for this
situation. Of course, we do the same for valve2 with respect to ∆Pinflow2 . Finally,
if the valve associated with the deepest zone valve1 is closed, there is no transport
of fluids in the lowest part of the production tubing of the well. That is, for ∆Ptub
really to have the significance of a driving force, it is set to zero if valve1 is closed.

Notice also that all data are based on measurements, i.e. they may contain mea-
surement errors. Consequently, we can only expect that the desired polynomial f
vanishes approximately at the points of X . In Section 4 we will return to this in-
stance of the production problem and solve it with the methods we are going to
present.

1.2 Border Bases

Ideally, inside the border
there is order.

(Three anonymous authors)

1.2.A. Motivation and Definition. The problems considered in the previous sec-
tion lead us to study zero-dimensional ideals in P = K[x1, . . . ,xn] where K is a field.
The two most common ways to describe such an ideal I are by either providing a
special system of generators (for instance, a Gröbner basis) of I or by finding a
vector space basis O of P/I and the matrices of the multiplications by the inde-
terminates with respect to O . One possibility to follow the second approach is to
use O = Tn \LTσ (I) , the complement of a leading term ideal of I . By Macaulay’s
Basis Theorem, such a set O is a K -basis of P/I . Are there other suitable sets O ?

A natural choice is to look for sets of terms. We need to fix how a term b j in the
border ∂O = (x1O∪·· ·∪xnO)\O of O is rewritten as a linear combination of the
terms in O . Thus, for every b j ∈ ∂O , a polynomial of the form

g j = b j−
µ
∑

i=1
ci jti

with ci j ∈ K and ti ∈O should be contained in I . Moreover, we would not like that
xkg j ∈ I . Hence we want xkb j /∈O . Therefore the set Tn \O should be a monoideal.
Consequently, O should be an order ideal, that is it should be closed under forming
divisors. Let us formulate precise definitions.
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Definition 1.2.1. Let O be a finite set of terms in Tn .
a) The set O is called an order ideal if t ∈ O and t ′ | t implies t ′ ∈ O .
b) Let O be an order ideal. The set ∂O = (x1O ∪ ·· · ∪ xnO) \O is called the

border of O .
c) Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . ,bν} its border. A set

of polynomials {g1, . . . ,gν} ⊂ I of the form

g j = b j−
µ
∑

i=1
ci jti

with ci j ∈ K and ti ∈ O is called an O -border prebasis of I .
d) An O -border prebasis of I is called an O -border basis of I if the residue

classes of the terms in O are a K -vector space basis of P/I .

The following example will be used frequently throughout this paper.

Example 1.2.2. In the ring P = R[x,y] , consider the ideal I = ( f1, f2) where

f1 = 1
4 x2 + y2−1

f2 = x2 + 1
4 y2−1

The zero set of I in A2(R) consists of the four points X = {(±√0.8,±√0.8)} .
This setting is illustrated in Figure 1.2.
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Fig. 1.2 Two ellipses intersecting in four points.

We use σ = DegRevLex and compute LTσ (I) = (x2, y2) . Thus the order ideal
O = {1, x, y, xy} represents a basis of P/I . Its border is ∂O = {x2, x2y, xy2, y2} .
The following figure illustrates the order ideal O and its border.

An O -border basis of I is given by G = {g1,g2,g3,g4} where
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Fig. 1.3 An order ideal and its border.

g1 = x2−0.8
g2 = x2y−0.8y

g3 = xy2−0.8x

g4 = y2−0.8

Let us see what happens if we disturb this example slightly.

Example 1.2.3. Again we use P =R[x,y] , but now we consider Ĩ = ( f̃1, f̃2) where

f̃1 = 0.25x2 + y2 +0.01xy−1
f̃2 = x2 +0.25y2 +0.01xy−1

Its zero set consists of four perturbed points X̃ close to those in X , as illustrated in
Figure 1.4.
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Fig. 1.4 Two slightly moved ellipses and their points of intersection.

The ideal Ĩ = ( f̃1, f̃2) has the reduced σ -Gröbner basis
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{x2− y2, xy+125y2−100, y3− 25
3906 x+ 3125

3906 y}

Moreover, we have LTσ (Ĩ) = (x2, xy, y3) and T2 \LTσ{Ĩ}= {1, x, y, y2} .
A small change in the coefficients of f1 and f2 has led to a big change in the

Gröbner basis of ( f̃1, f̃2) and in the associated vector space basis of R[x,y]/( f̃1, f̃2) ,
although the zeros of the ideal have not changed much. Numerical analysts call this
kind of unstable behavior a representation singularity.

However, also the ideal Ĩ has a a border basis with respect to O = {1,x,y,xy} .
Recall that the border of O is ∂O = {x2,x2y,xy2,y2} .

The O -border basis of Ĩ is G̃ = {g̃1, g̃2, g̃3, g̃4} where

g̃1 = x2 +0.008xy−0.8
g̃2 = x2y+ 25

3906 x− 3125
3906 y

g̃3 = xy2− 3125
3906 x+ 25

3906 y

g̃4 = y2 +0.008xy−0.8}

When we vary the coefficients of xy in the two generators from zero to 0.01, we
can see that one border bases changes continuously into the other. Thus the border
basis behaves numerically stable under small perturbations of the coefficient of xy .

1.2.B. Characterizations of border bases. In the sequel, we use the following
notation: let O = {t1, . . . , tµ} be an order ideal in Tn , let ∂O = {b1, . . . ,bν} be the

border of O , let G = {g1, . . . ,gν} be an O -border prebasis, where g j = b j−
µ
∑

i=1
ci jti

with ci j ∈ K , and let I = (g1, . . . ,gν) be the ideal generated by G .
The following remark collects some elementary properties of border bases.

Remark 1.2.4. Let J ⊆ P be a zero-dimensional ideal.
a) The ideal J need not have an O -border basis, even if its colength is µ . But if

it does, its O -border basis is uniquely determined.
b) If O is of the form Tn \LTσ (J) for some term ordering σ , then J has an

O -border basis. It contains the reduced σ -Gröbner basis of J .
c) There exists a Division Algorithm for border prebases (see [21], 6.4.11).

The following characterizations of border bases can be shown in analogy to the
corresponding results for Gröbner bases (see [21], 6.4.23 and 6.4.28). For a term
t ∈ Tn , its O -index indO(t) is the smallest natural number k such that t = t1t2
with t1 ∈O and t2 ∈ Tn

k .

Proposition 1.2.5. In the above setting, the set G is an O -border basis of I if and
only if one of the following equivalent conditions is satisfied.

a) For every f ∈ I \{0} , there are f1, . . . , fν ∈ P such that f = f1g1 + · · ·+ fν gν
and deg( fi)≤ indO( f )−1 whenever figi 6= 0 .

b) For every f ∈ I \{0} , there are f1, . . . , fν ∈ P such that f = f1g1 + · · ·+ fν gν
and max{deg( fi) | i ∈ {1, . . . ,ν}, figi 6= 0}= indO( f )−1 .
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Proposition 1.2.6. In the above setting, the set G is an O -border basis of I if and
only if the rewrite relation G−→ associated to G is confluent.

As we mentioned above, the vector space basis O of P/I can be used to describe
the K -algebra structure of P/I via the multiplication matrices of the multiplication
maps by the indeterminates. In addition, these multiplication maps can be used to
characterize border bases, as the next theorem shows.

Definition 1.2.7. For r ∈ {1, . . . ,n} , we define the r -th formal multiplication ma-
trix Ar as follows:

Multiply ti ∈ O by xr . If xrti = b j is in the border of O , rewrite it using the
prebasis polynomial g j = b j−∑µ

k=1 ck jtk and put (c1 j, . . . ,cµ j) into the i -th column
of Ar . But if xrti = t j then put the j -th unit vector into the i -th column of Ar .

Clearly, if G is a border basis and A1, . . . ,An are the actual multiplication ma-
trices, they commute because P/I is a commutative ring. Surprisingly, the converse
holds, too.

Theorem 1.2.8. (Mourrain [26])
The set G is the O -border basis of I if and only if the formal multiplication matrices
commute, i.e. iff

Ai A j = A j Ai for 1≤ i < j ≤ n.

For a detailed proof, see [21], 6.4.30. Let us check this result in a concrete case.

Example 1.2.9. In Example 1.2.2 the multiplication matrices are given by

Ax =




0 0.8 0 0
1 0 0 0
0 0 0 0.8
0 0 1 0


 and Ay =




0 0 0.8 0
0 0 0 0.8
1 0 0 0
0 1 0 0




To check this, we let t1 = 1, t2 = x , t3 = y , and t4 = xy . Then we note that for
instance xt1 = t2 means that the first column of Ax is (0,1,0,0) . If we compute
xt2 = x2 , we have to use the coefficients of the corresponding border prebasis poly-
nomial g1 and put (0.8,0,0,0) into the second column of A1 , etc.

1.2.C. Neighbors and their syzygies. Our next goal is to generalize the Buch-
berger Criterion for Gröbner bases (see [20], 2.5.3) to the border basis setting. The
Buchberger criterion is based on the notion of lifting syzygies. Given an order ideal
O = {t1, . . . , tµ} and its border {b1, . . . ,bν} , it is well-known that the syzygy mod-
ule

SyzP(b1, . . . ,bν) = {( f1, . . . , fν ∈ Pν | f1b1 + · · ·+ fν bν = 0}
is generated by the fundamental syzygies

σi j = (lcm(bi,b j)/bi) ei− (lcm(bi,b j)/b j) e j
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with 1≤ i < j ≤ ν . However, this system of generators is not minimal and a much
smaller subset suffices to generate the same module. The following terminology will
be useful to describe such as subset.

Definition 1.2.10. Let bi,b j ∈ ∂O be two distinct border terms.
a) The border terms bi and b j are called next-door neighbors if bi = xk b j for

some k ∈ {1, . . . ,n} .
b) The border terms bi and b j are called across-the-street neighbors if there are

k, ` ∈ {1, . . . ,n} such that xk bi = x` b j .
c) The border terms bi and b j are called neighbors if they are next-door neigh-

bors or across-the-street neighbors.
d) The graph whose vertices are the border terms and whose edges are given by

the neighbor relation is called the border web of O .

Example 1.2.11. For instance, in Example 1.2.2 the border is ∂O = {b1,b2,b3,b4}
with b1 = x2 , b2 = x2y , b3 = xy2 , and b4 = y2 . Here we have two next-door neigh-
bor pairs (b2,b1) , (b3,b4) and one across-the-street neighbor pair (b2,b3) .
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x

y

• •

••
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◦..............
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...........
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Fig. 1.5 A simple border web.

Proposition 1.2.12. The border web is connected.

For a proof, see [17], Prop. 19. Based on the concept of neighbors, we now re-
strict fundamental syzygies to neighbor pairs.

Definition 1.2.13. Let O be an order ideal with border ∂O = {b1, . . . ,bν} .
a) For next-door neighbors bi,b j , i.e. for bi = xkb j , the fundamental syzygy σi j

has the form τi j = ei− xke j and is called a next-door neighbor syzygy.
b) For across-the-street neighbors bi,b j , i.e. for xkbi = x`b j , the fundamental

syzygy σi j has the form υi j = xkei− x`e j and is called an across-the-street
neighbor syzygy.

c) The set of all neighbor syzygies is the set of all next-door or across-the street
neighbor syzygies.



16 Kreuzer, Poulisse, Robbiano

In [17], Prop. 21, the following result is shown.

Proposition 1.2.14. The set of neighbor syzygies generates the module of border
syzygies SyzP(b1, . . . ,bν) .

Example 1.2.15. For instance, let us compute the border syzygies for the order ideal
O = {1, x, y, xy} . We have ∂O = {b1,b2,b3,b4} with b1 = x2 , b2 = x2y ,b3 = xy2 ,
and b4 = y2 , and the neighbor pairs (b1,b2) , (b2,b3) , (b3,b4) . Therefore the border
syzygy module SyzP(b1,b2,b3,b4) is generated by the following three neighbor
syzygies:

e2− ye1 = (−y, 1, 0, 0)
ye2− xe3 = (0, y,−x, 0)

e4− xe3 = (0, 0,−x, 1)

In order to transfer the Buchberger Criterion from Gröbner to border bases, it
suffices to lift neighbor syzygies.

Definition 1.2.16. Let gi,g j ∈G be two distinct border prebasis polynomials. Then
the polynomial

Si j = (lcm(bi,b j)/bi) ·gi− (lcm(bi,b j)/b j) ·g j

is called the S-polynomial of gi and g j .

Remark 1.2.17. Let gi,g j ∈ G .
a) If (bi,b j) are next-door neighbors with b j = xk bi then the S-polynomial Si j is

of the form Si j = g j− xk gi .
b) If (bi,b j) are across-the-street neighbors with xk bi = x` b j then Si j is of the

form Si j = xk gi− x` b j .
In both cases we see that the support of Si j is contained in O ∪∂O . Hence there

exists constants ai ∈ K such that the support of

NRO,G(Si j) = Si j−
µ
∑

m=1
am gm ∈ I

is contained in O . If G is a border basis, this implies NRO,G(Si j) = 0. We shall say
that the syzygy e j − xk ei−∑µ

m=1 amem resp. xk ei− x` e j −∑µ
m=1 amem is a lifting

of the neighbor syzygy e j− xk ei resp. xk ei− x` e j .

Theorem 1.2.18. (Stetter [30])
An O -border prebasis G is an O -border basis if and only if the neighbor syzygies
lift, i.e. if and only if we have

NRO,G(Si j) = 0

for all (i, j) such that (bi,b j) is a pair of neighbors.
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The proof of this theorem is pretty involved. Let us briefly describe the idea. The
vanishing conditions for the normal remainders of the S-polynomials entail certain
equalities which have to be satisfied by the coefficients ci j of the border prebasis
polynomials. Using a (rather nasty) case-by-case argument, one checks that these are
the same equalities that one gets from the conditions that the formal multiplication
matrices have to commute. A detailed version of this proof is contained in [21],
Section 6.4.

Example 1.2.19. Let us look at these conditions for O = {1, x, y, xy} . An O -border
prebasis G = {g1,g2,g3,g4} is of the form

g1 = x2− c11 ·1− c21 x− c31 y− c41 xy

g2 = x2y− c12 ·1− c22 x− c32 y− c42 xy

g3 = xy2− c13 ·1− c23 x− c33 y− c43 xy

g4 = y2− c14 ·1− c24 x− c34 y− c44 xy

The S-polynomials of its neighbor syzygies are

S21 = g2− yg1

=−c12− c22x+(c11− c32)y+(c21− c42)xy+ c31y2 + c41xy2

S23 = yg2− xg3

= c13x− c22y+(c33−c22)xy+ c23x2 + c43x2y− c42xy2− c32y2

S34 = g3− xg4

=−c13 +(c14− c23)x− c33y+(c34− c43)xy+ c24x2 + c44x2y

Their normal remainders with respect to G are

NRO,G(S21) = (−c12 + c31c14 + c41c13)+(−c22 + c31c24 + c41c23)x
+(c11− c32 + c31c34 + c41c33)y+(c21− c42 + c31c44 + c41c43)xy

NRO,G(S23) = (c11c23 + c12c43− c42c13− c32c14)+(c21c23 + c22c43

−c42c23− c32c24 + c13)x+(−c12 + c31c23 + c32c43− c42c33− c32c34)y
+(c33− c22 + c41c23− c32c44)xy

NRO,G(S34) = (−c13 + c11c24 + c12c44)+(c14−c23 + c21c24 + c23c44)x
+(−c33 + c31c24 + c32c44)y+(c34− c43 + c41c24 + c42c44)xy

Here G is a border basis if and only if these 12 coefficients are zero. In Exam-
ple 1.6.14 we shall examine the scheme defined by these vanishing conditions.
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1.3 The Eigenvalue Method for Solving Polynomial Systems

When working toward the solution of a problem,
it always helps if you know the answer.

(Rule of Accuracy)

As said in the introduction, this paper deals mainly with the problem of recon-
structing polynomial equations from data. The opposite problem of solving poly-
nomial systems is also well-known since it plays a key role in many applications.
Rather than trying to discuss this problem in its full generality, we will now have a
look at a nice method which deserves to be more widely known in the commutative
algebra community. While the so called Lex-method is amply described in the liter-
ature (see for instance [20], Section 3.7), we are going to describe an idea on how to
use classical methods in linear algebra to solve polynomial systems. The pioneering
work was done in [4] and [5], and a nice introduction can be found in [9].

In the following we let K be a field and P = K[x1, . . . ,xn] . Let the polynomial
system be defined by f1, . . . , fs ∈ P . Then we let I = ( f1, . . . , fs) and A = P/I .
We assume that the ideal I is zero-dimensional, so that A is a finite dimensional
K -vector space.

Definition 1.3.1. Given an element f in P , we define a K -linear map m f : A−→ A
by m f (g) = f g mod I and call it the multiplication map defined by f . We also
consider the induced K -linear map on the dual spaces m∗

f : A∗ −→ A∗ defined by
m∗

f (ϕ) = ϕ ◦m f .

If we know a vector space basis of A , we can represent a multiplication map by
its matrix with respect to this basis. Let us have a look at a concrete case.

Example 1.3.2. Let P =R[x] , let f = x2 +1, and I be the principal ideal generated
by x3− x2 + x− 1 = (x− 1)(x2 + 1) . The residue classes of the terms in {1,x,x2}
form a vector space basis of P/I . Using the two relations x3 +x≡ x2 +1 mod I and
x4 +x2 ≡ x2 +1 mod I , we see that the matrix which represents m f with respect to
this basis is 


1 1 1
0 0 0
1 1 1




The next theorem provides an important link between Z (I) , the set of zeros of I
over the algebraic closure K of K , and the eigenvalues of multiplication maps. Let
P = K[x1, . . . ,xn] and A = P/IP . An element λ ∈ K is called a K -eigenvalue of a
multiplication map m f : A −→ A if it is a zero of the characteristic polynomial
of m f , i.e. if the K -linear map ϕ f ,λ : A −→ A defined by ḡ 7→ f̄ ḡ− λ ḡ is not
invertible.

Theorem 1.3.3. Let I be a zero-dimensional ideal in P, let f ∈ P, and let λ ∈ K ,
Then the following conditions are equivalent.

a) The element λ is a K -eigenvalue of m f .
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b) There exists a point p ∈Z (I) such that λ = f (p) .

In this equivalence, if p ∈ZK(I) , we have λ ∈ K .

Proof. Let us first prove a) =⇒ b) . If λ does not coincide with any of the values
of f at the points p ∈Z (I) , the ideal J = I P +( f −λ ) ⊆ P satisfies Z (J) = /0 .
Thus the Weak Nullstellensatz (see [20], Corollary 2.6.14) yields 1 ∈ J . Therefore
there exist g ∈ P and h ∈ I P such that 1 = g( f −λ )+ h . Consequently, we have
1 ≡ g( f −λ ) mod I P , so that ϕ f ,λ is invertible with inverse -mḡ . Therefore λ is
not a K -eigenvalue of m f .

Now let us prove the implication b) =⇒ a) . If λ is not a K -eigenvalue of m f
then ϕ f ,λ is an invertible map. In particular, it is surjective, and thus there exists
g ∈ P such that g( f −λ )≡ 1 mod I P . Clearly, this implies that there cannot exist
a point p ∈Z (I) such that f (p)−λ = 0.

The additional claim follows from λ = f (p) . ut
In the setting of Example 1.3.2, the eigenvalues of m f and the zeros of I are

related as follows.

Example 1.3.4. As in Example 1.3.2, we let I = (x3− x2 + x− 1) ⊆ P = R[x] and
f = x2 +1. Since m f is singular, the element λ1 = 0 is an eigenvalue. And indeed,
we have Z (I) = {1, i,−i} and f (i) = f (−i) = 0. For the other eigenvalue λ2 = 2,
we have f (1) = 2. Notice that here we have λ1 ∈ R , but the corresponding zeros
of I are not real numbers.

The above theorem can be used in several ways to compute the solutions of a
system of polynomial equations. One method is based on the following observation.

Corollary 1.3.5. Let i ∈ {1, . . . ,n} . The ith coordinates of the points of Z (I) are
the K -eigenvalues of the multiplication map mxi .

Proof. This follows immediately from the theorem, since xi(p) is exactly the ith

coordinate of a point p ∈ Kn . ut
Hence we can determine Z (I) in the following way. Fix a tuple of polynomials

E = (t1, . . . , tµ) whose residue classes form a K -basis of A . For f ∈ P , we let
f E = ( f t1, . . . , f tµ) and describe the multiplication map m f : A−→A by the matrix
ME

f E whose the jth column (a1 j, . . . ,aµ j)tr is given by

f t j ≡ a1 j t1 + · · ·+aµ j tµ mod I

A more compact way of expressing this fact is the formula

f E ≡ E ·ME
f E mod I (∗)

For the tuple E , we usually choose an order ideal of terms (see Definition 1.2.1). In
particular, we shall assume that we have t1 = 1.
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If the ideal I contains a linear polynomial, we can reduce the problem of com-
puting Z (I) to a problem for an ideal in a polynomial ring having fewer inde-
terminates. Thus we shall now assume that I contains no linear polynomial. Con-
sequently, we suppose that the indeterminates are in E , specifically that we have
t2 = x1 , . . . , tn+1 = xn .

One method of finding Z (I) is to compute the K -eigenvalues λi1, . . . ,λiµ
of ME

xiE for i = 1, . . . ,n and then to check for all points (λ1 j1 , . . . ,λn jn) such that
j1, . . . , jn ∈ {1, . . . ,µ} whether they are zeros of I . Clearly, this approach has sev-
eral disadvantages:

1. Usually, the K -eigenvalues of the multiplication matrices ME
xiE can only be de-

termined approximatively.
2. The set of candidate points is a grid which is typically much larger than the set

Z (I) .

A better approach uses the next theorem. For a K -linear map ϕ : A −→ A , we
let ϕ̄ = ϕ⊗K K : A−→ A . Given a K -eigenvalue λ ∈ K of ϕ , the K -vector space
ker(ϕ̄ −λ idA) is called the corresponding K -eigenspace and its non-zero vectors
are called the corresponding K -eigenvectors. For the matrices representing ϕ , we
use a similar terminology.

Theorem 1.3.6. In the above setting, let f ∈P, let p∈Z (I) , and let E =(t1, . . . , tµ)
be a tuple of polynomials whose residue classes form a K -basis of A. Then the vec-
tor E(p)tr = (t1(p), . . . , tµ(p))tr is a K -eigenvector of (ME

f E)tr corresponding to the
K -eigenvalue f (p) .

Proof. When we evaluate both sides of the above formula (∗) at p , we get the
equality f (p)E(p) = E(p)ME

f E . Transposing both sides yields

f (p)(E(p))tr = (ME
f E)tr E(p)tr

and this is precisely the claim. ut
Note that the matrix (ME

f E)tr represents the linear map m∗
f (see Definition 1.3.1).

To make good use of this theorem, we need the following notion.

Definition 1.3.7. A matrix M ∈Matµ(K) is called K -non-derogatory if it has the
property that all its K -eigenspaces are 1-dimensional.

It is a well-known result in Linear Algebra that this condition is equivalent to
requiring that the Jordan canonical form of M over K has one Jordan block per
eigenvalue, or to the condition that the minimal polynomial and the characteristic
polynomial of M agree. Using the preceding theorem and a non-derogatory multi-
plication matrix, we can solve a zero-dimensional polynomial system as follows.

Corollary 1.3.8. Let E = (t1, . . . , tµ) be a tuple of polynomials whose residue
classes form a K -basis of A, let 1,x1, . . . ,xn be the first n + 1 -entries of E , and
let f ∈ P be such that the matrix (ME

f E)tr is K -non-derogatory. Let V1, . . . ,Vr be
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the K -eigenspaces of this matrix. For j = 1, . . . ,r , choose a basis vector v j of Vj
of the form v j = (1,a2 j, . . . ,aµ j) with ai j ∈ K . Then Z (I) consists of the points
p j = (a2 j, . . . ,an+1 j) such that j ∈ {1, . . . ,r} .

Proof. Let j∈{1, . . . ,r} . By Theorem 1.3.6, the vector E(p j)= (t1(p j), . . . , tµ(p j))
is a K -eigenvector of (ME

f E)tr corresponding to the K -eigenvalue f (p j) . Hence it
is a non-zero vector in Vj . Since Vj is 1-dimensional and t1(p j) = 1 equals the
first component of v j , we have the equality E(p j) = v j . Now the observation that
E(p j) = (1,x1(p j), . . . ,xn(p j), . . .) finishes the proof. ut

The technique given in this corollary addresses the second problem stated above:
no exponentially large set of candidate points has to be examined. However, we
note that the first problem still persists. For instance, if K = Q , instead of the
Q-eigenvalues of (ME

f E)tr we can usually only compute approximate eigenvalues.
Hence the corresponding Q-eigenspaces are not computable as true kernels of lin-
ear maps. However, in the next section we will introduce approximate kernels of
linear maps which take care of this task.

Let us end this section with an example which illustrates the methods described
above.

Example 1.3.9. Let I be the ideal in P =R[x,y] generated by the set of polynomials
{x2 + 4/3xy + 1/3y2− 7/3x− 5/3y + 4/3, y3 + 10/3xy + 7/3y2− 4/3x− 20/3y +
4/3, xy2−7/3xy−7/3y2−2/3x+11/3y+2/3} . It is easy to check that this set is
a Gröbner basis of I with respect to σ = DegRevLex . Hence E = {1,x,y,xy,y2} is
an order ideal of terms whose residue classes form a K -basis of P/I . By computing
the normal forms NFσ ,I(x2) , NFσ ,I(x2y) , NFσ ,I(xy2, I) and NFσ ,I(y3) , we get the
multiplication matrices

ME
xE =




0−4/3 0 4/3 −2/3
1 7/3 0−4/3 2/3
0 5/3 0 4/3−11/3
0−4/3 1 1/3 7/3
0−1/3 0−2/3 7/3




and ME
yE =




0 0 0 −2/3 −4/3
0 0 0 2/3 4/3
1 0 0−11/3 20/3
0 1 0 7/3−10/3
0 0 1 7/3 −7/3




First, let us follow the method of Corollary 1.3.5. The characteristic polynomial
of ME

xE is (x+1)(x−1)2(x−2)2 and the characteristic polynomial of ME
yE is given

by x(x−1)(x + 1)(x−2)(x + 2) . If we check the 15 candidate points, we find that
five of them, namely (1,0) , (1,1) , (2,−1) , (−1,2) , and (2,−2) form the set of
zeros of I .

Now we apply the method of Corollary 1.3.8. The characteristic polynomial of
(ME

xE)tr is the same as that of ME
xE . It is easy to check (for instance, using CoCoA)

that the dimension of the eigenspace corresponding to the eigenvalue 1 is 2. There-
fore the matrix (ME

xE)tr is derogatory and cannot be used for the proposed method.
On the other hand, the characteristic polynomial of the matrix (ME

yE)tr is given
by x(x− 1)(x + 1)(x− 2)(x + 2) . Consequently, this matrix is non-derogatory. We
compute basis vectors for its eigenspaces and norm them to have first component 1.
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The result is v1 = (1,1,0,0,0) , v2 = (1,1,1,1,1) , v3 = (1,2,−1,−2,1) , v4 =
(1,−1,2,−2,4) , and v5 = (1,2,−2,−4,4) . We get Z (I) = {(1,0), (1,1), (2,−1),
(−1,2), (2,−2)} , as before.

1.4 Approximate Vanishing Ideals

Two is not equal to three;
not even for large values of two.

(Grabel’s Law)

It is time to enter the real world. When dealing with industrial applications, we
do not always have exact data available. Thus our computations have to be based on
measured values with intrinsic errors. How can we perform symbolic computation
in this world? Let us start to discuss this question in a first relevant case. Then,
based on our answer, we shall present an actual industrial example. We want to deal
with the following situation. Let X= {p1, . . . , ps} be a set of s points in Rn . These
points are meant to represent measured values. In the computer, they will be stored
as tuples of floating point numbers.

If X was an exact set of points, we could compute its vanishing ideal

I(X) = { f ∈ R[x1, . . . ,xn] | f (p1) = · · ·= f (ps) = 0}

However, in the presented setting, it is well-known that this leads to a numerically
unstable and virtually meaningless result. Instead, we are looking for a reasonable
definition of an approximate vanishing ideal of X . To this end, we have to over-
come a number of impediments. First of all, we need a threshold number ε ∈R+ .
We say that a polynomial f ∈ R[x1, . . . ,xn] vanishes ε -approximately at X if
| f (pi)|< ε for i = 1, . . . ,s . This definition entails several problems.

1. The polynomials which vanish ε -approximately at X do not form an ideal!
2. All polynomials with very small coefficients vanish ε -approximately at X !

To address the second problem, we introduce a topology on the polynomial ring
P = R[x1, . . . ,xn] .

Definition 1.4.1. Let f = a1t1 + · · ·+ asts ∈ P , where a1, . . . ,as ∈ R \ {0} and

t1, . . . , ts ∈ Tn . Then the number ‖ f‖ = ‖(a1, . . . ,as)‖ =
√

a2
1 + · · ·+a2

s is called
the (Euclidean) norm of f .

Clearly, this definition turns P into a normed vector space. A polynomial f ∈ P
with ‖ f‖= 1 will be called unitary. Now it is reasonable to consider the condition
that polynomials f ∈ P with ‖ f‖= 1 vanish ε -approximately at X , and we can try
the following definition.
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Definition 1.4.2. An ideal I ⊆ P is called an ε -approximate vanishing ideal of X
if there exists a system of generators { f1, . . . , fr} of I such that ‖ fi‖ = 1 and fi
vanishes ε -approximately at X for i = 1, . . . ,r .

In itself, this definition is certainly still too loose. For instance, it is clear that the
unit ideal is always an ε -approximate vanishing ideal. Nevertheless, we shall see
below that we arrive at a very usable definition if we impose additional structure
on the generators. Before we move to this topic, though, we need two additional
ingredients.

1.4.A. The Singular Value Decomposition (SVD). In approximate computation,
we frequently have to decide whether something is zero or not. The following theo-
rem and its corollary can be used to determine the vectors which are approximately
in the kernel of a linear map of R -vector spaces.

Theorem 1.4.3 (The Singular Value Decomposition).
Let A ∈Matm,n(R) .

1. There are orthogonal matrices U ∈Matm,m(R) and V ∈Matn,n(R) and a ma-

trix S ∈Matm,n(R) of the form S =
(

D 0
0 0

)
such that

A = U ·S ·V tr = U ·
(

D 0
0 0

)
·V tr

where D = diag(s1, . . . ,sr) is a diagonal matrix.
2. In this decomposition, it is possible to achieve s1 ≥ s2 ≥ ·· · ≥ sr > 0 . The num-

bers s1, . . . ,sr depend only on A and are called the singular values of A .
3. The number r is the rank of A .
4. The matrices U and V have the following interpretation:

first r columns of U ≡ ONB of the column space of A
last m− r columns of U ≡ ONB of the kernel of A tr

first r columns of V ≡ ONB of the row space of A
≡ ONB of the column space of A tr

last n− r columns of V ≡ ONB of the kernel of A

Here ONB is an abbreviation for “orthonormal basis”.

For a proof, see for instance [12], Sections 2.5.3 and 2.6.1. The SVD of a real
matrix allows us to define and compute its approximate kernel.

Corollary 1.4.4. Let A ∈Matm,n(R) , and let ε > 0 be given. Choose k∈ {1, . . . ,r}
such that sk > ε ≥ sk+1 , form the matrix S̃ by setting sk+1 = · · · = sr = 0 in S ,

and let Ã = U S̃ V tr .

1. We have min{‖A −B‖ : rank(B) ≤ k} = ‖A − Ã ‖ = sk+1 . (Here ‖· · ·‖ de-
notes the 2-operator norm of a matrix.)
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2. The vector subspace apker(A ,ε) = ker(Ã ) is the largest dimensional kernel of
a matrix whose Euclidean distance from A is at most ε . It will be called the
ε -approximate kernel of A .

3. The last n− k columns vk+1, . . . ,vn of V are an ONB of apker(A ,ε) . They
satisfy ‖A vi‖< ε .

Proof. See [12], Section 2.5.4 and the theorem. To prove the third claim, observe
that ‖A vi‖= ‖(A − Ã )vi‖ ≤ ‖A − Ã ‖< ε . ut
1.4.B. The Stable Reduced Row Echelon Form. Our next task is to find the lead-
ing terms contained in a vector space of polynomials. Again we are of course in-
terested in leading terms of unitary polynomials for which the leading coefficient is
not smaller than a given threshold number.

Let V ⊂ P be a finite dimensional vector space of polynomials. Given a term
ordering σ and a basis B = { f1, . . . , fr} of V , We can identify V with a real matrix
as follows.

Definition 1.4.5. Let S = Supp( f1) ∪ ·· · ∪ Supp( fr) , and write S = {t1, . . . , ts}
where the terms ti ∈ Tn are ordered such that t1 ≥σ t2 ≥σ · · · ≥σ ts . Clearly, the
support of every polynomial of V is contained in S . For i = 1, . . . ,r , we write
fi = ci1t1 + · · ·+ cists with ci j ∈ R . Then the matrix Mσ ,B = (ci j) ∈ Matr,s(R) is
called the Macaulay matrix of V with respect to σ and B .

In other words, the columns of Mσ ,B are indexed by the terms in S and the rows
correspond to the coefficients of the basis polynomials fi . If we use Gaußian elim-
ination to bring Mσ ,B into row echelon form, the first non-zero entries of each row
will indicate the leading term of the corresponding polynomial. Hence the pivot
columns will correspond precisely to the set LTσ (V ) of all leading terms of poly-
nomials in V .

To imitate this in the approximate world, we should perform the Gaußian elim-
ination in a numerically stable way. However, we cannot use complete pivoting,
since the order of the rows is fixed by the term ordering. The following adaptation
of the QR-decomposition uses partial pivoting and provides the “best” leading terms
available under the given circumstances.

Proposition 1.4.6 (Stabilized Reduced Row Echelon Form).
Let A∈Matm,n(R) and τ > 0 be given. Let a1, . . . ,an be the columns of A. Consider
the following instructions.

(1) Let λ1 = ‖a1‖ . If λ1 < τ , we let R = (0, . . . ,0) ∈Matm,1(R) . Otherwise, we let
Q = ((1/λ1)a1) ∈Matm,1(R) and R = (λ1,0, . . . ,0) ∈Matm,1(R) .

(2) For i = 2, . . . ,n, compute qi = ai −∑i−1
j=1〈ai,q j〉q j and λi = ‖qi‖ . If λi < τ ,

append a zero column to R. Otherwise, append the column (1/λi)qi to Q and
the column (λi〈a1,q1〉, . . . ,λi〈ai−1,qi−1〉,λi,0, . . . ,0) to R.

(3) Starting with the last row and working upwards, use the first non-zero entry of
each row of R to clean out the non-zero entries above it.
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(4) For i = 1, . . . ,m, compute the norm ρi of the i-th row of R. If ρi < τ , set this
row to zero. Otherwise, divide this row by ρi . Then return the matrix R.

This is an algorithm which computes a matrix R in reduced row echelon form.
The row space of R is contained in the row space of the matrix A which is obtained
from A by setting the columns whose norm is less than τ to zero. Here the pivot
elements of R are not 1, but its rows are unitary vectors.

Furthermore, if the rows of A are unitary and mutually orthogonal, the row vec-
tors of R differ by less than τ m

√
n from unitary vectors in the row space of A.

The proof of this proposition in contained in [14], Section 3.

1.4.C. The AVI-Algorithm. Finally we are ready to combine all ingredients and
produce an algorithm which computes a “good” system of generators of an approx-
imate vanishing ideal of X . By “good” we mean the following.

Definition 1.4.7. Let O = {t1, . . . , tµ} be an order ideal of terms in Tn , denote its
border by ∂O = {b1, . . . ,bν} , and let G = {g1, . . . ,gν} be an O -border prebasis
of the ideal I = (g1, . . . ,gν) in P . Recall that this means that g j is of the form
g j = b j−∑µ

i=1 ci jti with ci j ∈ R .
For every pair (i, j) such that bi,b j are neighbors in ∂O , we compute the normal

remainder S′i j = NRO,G(Si j) of the S-polynomial of gi and g j with respect to G .
We say that G is an ε -approximate border basis of the ideal I = (G) if we have
‖S′i j‖< ε for all such pairs (i, j) .

Given a finite set of points X= {p1, . . . , ps} in Rn , the first thing one should do
in every approximate computation is to normalize the data, i.e. to transform X such
that X ⊂ [−1,1]n . Then the following algorithm computes an approximate border
basis of an approximate vanishing ideal of X .

Theorem 1.4.8 (The Approximate Vanishing Ideal Algorithm (AVI-Algorithm)).

Let X = {p1, . . . , ps} ⊂ [−1,1]n ⊂ Rn , let P = R[x1, . . . ,xn] , let evalX : P −→ Rs

be the associated evaluation map evalX( f ) = ( f (p1), . . . , f (ps)) , and let ε > τ > 0
be small positive numbers. Moreover, let σ be a degree compatible term ordering.
Consider the following sequence of instructions.

A1 Start with lists G = /0 , O = [1] , a matrix M = (1, . . . ,1)tr ∈ Mats,1(R) , and
d = 0 .

A2 Increase d by one and let L be the list of all terms of degree d in ∂O , ordered
decreasingly w.r.t. σ . If L = /0 , return the pair (G,O) and stop. Otherwise, let
L = (t1, . . . , t`) .

A3 Let m be the number of columns of M . Form the matrix

A = (evalX(t1), . . . ,evalX(t`),M ) ∈Mats,`+m(R).

Using its SVD, calculate a matrix B whose column vectors are an ONB of the
approximate kernel apker(A ,ε) .
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A4 Using Proposition 1.4.6, compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix C = (ci j) ∈Matk,`+m(R) such
that ci j = 0 for j < ν(i) . Here ν(i) denotes the column index of the pivot element
in the ith row of C .

A5 For all j ∈ {1, . . . , `} such that there exists a i ∈ {1, . . . ,k} with ν(i) = j (i.e.
for the column indices of the pivot elements), append the polynomial

ci jt j +
`

∑
j′= j+1

ci j′t j′ +
`+m

∑
j′=`+1

ci j′u j′

to the list G, where u j′ is the ( j′− `)th element of O .
A6 For all j = `,`− 1, . . . ,1 such that the jth column of C contains no pivot ele-

ment, append the term t j as a new first element to O and append the column
evalX(t j) as a new first column to M .

A7 Using the SVD of M , calculate a matrix B whose column vectors are an ONB
of apker(M ,ε) .

A8 Repeat steps A4 – A7 until B is empty. Then continue with step A2.

This is an algorithm which computes a pair (G,O) of sets G = {g1, . . . ,gν} and
O = {t1, . . . , tµ} with the following properties:

a) The set G consists of unitary polynomials which generate a δ -approximate
vanishing ideal of X , where δ = ε

√
ν + τν(µ +ν) .

b) The set O = {t1, . . . , tµ} contains an order ideal of terms such that there is no
unitary polynomial in 〈O〉K which vanishes ε -approximately on X .

c) The set G̃ = {(1/LCσ (g))g | g ∈ G} is an O -border prebasis.
d) Let γ denote the smallest absolute value of the border term coefficient of one

of the polynomials gi . Then the set G̃ is an η -approximate border basis for
η = 2δ +2νδ 2/γε +2νδ

√
s/ε .

For a proof, see [14], Section 3. Let us add some remarks on the performance of
this algorithm.

1. The AVI-Algorithm follows in principle the method of the Buchberger-Möller
Algorithm for computing the exact vanishing ideal of X . However, we are not
processing one term at a time, but all terms of a given degree simultaneously,
in order to filter out “almost relations” among the evaluation vectors using the
SVD. Of course, if these sets of terms are too large, we can partition them into
smaller chunks to speed up the SVD calculation.

2. The stated bounds for δ and η are rather crude. Using a more refined analy-
sis, they could be improved significantly. In practical examples, the behavior of
the computed approximate border bases is much better than predicted by these
bounds.

3. By changing the construction of the list L in step A2 appropriately, the AVI-
Algorithm can be used to compute an “approximate Gröbner basis” of an ap-
proximate vanishing ideal of X . More precisely, the list L should be defined as
all terms in Tn

d which are not contained in 〈LTσ (G)〉 . Unfortunately, there is
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no guarantee that the computed polynomials are close to an actual Gröbner ba-
sis. The computation of the normal remainders of the S-polynomials requires a
number of reductions steps which can be very large. Therefore no bound for the
size of the evaluation vectors of these normal remainders can be given. In many
practical examples, however, the Gröbner basis version works fine.

4. The AVI-Algorithm can also be combined with a threshold control in order to
obtain a smoother evaluation behaviour of the computed border prebasis. Details
can be found in [14], Section 3.

What is an approximate O -border basis good for? In the next subsection we
shall see an actual industrial application. Moreover, given a further order ideal O ′
of the same cardinality, we can compute an approximate O ′ -border basis using the
technique of [18], Prop. 5. (In general, this will come at the expense of a partial
loss of the quality of approximation.) Finally, we can compute a “close-by” exact
O -border basis having coefficients in Q via the rational recovery technique in [19],
and this exact border basis can be used as input for “higher” algebraic operations
such as the computation of syzygy modules.

1.4.D. An Application of the AVI Algorithm. Let us now return to Problems 1
and 2 discussed in Section 1. Our idea is to construct the desired polynomial
f ∈ P = R[x1, . . . ,x5] using the AVI algorithm 1.4.8. Finding f means explaining
the production as a linear combination of linearly independent “data series” which,
in turn, depend on the evaluations of the indeterminates xi . This implies that linear
dependencies among those input combinations have to be removed first, i.e. that we
have to pass to a suitable quotient modulo certain relations among the indetermi-
nates. In the context of the AVI algorithm, where we are dealing with large uncer-
tainties in the set of points X , we need to consider approximate relations among the
variables.

In summary, we are specifically looking for a polynomial f ∈ P = R[x1, . . . ,x5]
of the form

f =
µ
∑

i=1
ci ti + g

where g∈ P is contained in an ε -approximate vanishing ideal of X , where we have
ci ∈R , and where O = {t1, . . . , tµ} is an order ideal of monomials whose evaluation
vectors at the points of X are almost linearly independent. The evaluation vector
of f should represent the production data used for the modeling experiment.

Why do we expect that such a representation exists? Observe that the order
ideal O = {t1, . . . , tµ} is the one calculated by the AVI algorithm. Its evaluation
vectors {evalX(t1), . . . ,evalX(tµ)} span approximately the vector space of all possi-
ble evaluation vectors of terms at X . Moreover, this agrees with the assumption that
we tried to motivate in Section 1. Our method to compute f is to take its evaluation
vector evalX( f ) , the measured production, and to project it to the linear span of the
evaluation vectors evalX(ti) .

The results of trying this method using actual industrial data are shown in the
following figure. The values of the physical quantities associated to x1, . . . ,x5 were
available at 7400 time stamps. The first 6000 data points were used for the modeling
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experiment, and the computed polynomial f was evaluated at the remaining 1400
data points in the validation phase. The physical interpretation of the indeterminates
is according to Table 1.1.

2000 3000 4000 5000 6000 7000 8000
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AVI calculation of two−zone well
 

measured
reconstructed
predicted

Fig. 1.6 Result of an AVI application.

Figure 1.6 shows that our model f does an excellent job: the comparison of the
predicted values for the production with the measured values shows that the model
passes the validation test unambiguously. The spikes shown in the figure result from
instrumentation sensor failures.

Which choices and a priori information went into this computation? The term
ordering we used is DegRevLex . The significance of this choice will be discussed
below. For the threshold value ε , we used ε = 0.1. A suitable value for ε cannot
be inferred from inspecting the measured data. As a rule-of-thumb, we choose it
according to the size of the relative measurement errors, but we do not know a
mathematical argument to determine a judicious choice of this parameter. In more
intuitive terms, the value for ε is related to the level of detail we are looking at
the physical problem we are investigating. In loose terms, when choosing relatively
large values for ε , we are only following the large trends in the data, whereas when
choosing smaller values for ε , we are zooming in on the “local” variations in the
data.

Now we address one of the most remarkable features of the AVI algorithm,
namely that it extracts structural information from numerical, measured data. This
is unlike virtually any other method which is used in applications where a model
structure in whatever form has to be provided as input for the algorithm which is
used. Using the AVI algorithm, the model structure is output. Specifying a model
structure up front means that a prescription is imposed on the data how the physical
system under investigation works. But specifically in the case of an oil reservoir one
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cannot know how it works. To emphasize this crucial point we have summarized
this unique feature of the AVI algorithm in Figure 1.7.

DATA

a priori

AVI

knowledge

model structure

Fig. 1.7 Model construction using the AVI algorithm.

The motivation we have given in Section 1 for our problem statements indicates
that a good numerical approximation and prediction of production values is not
enough to deal completely with the production problem. In itself, the computed
model does not give information about the all-determining interactions occurring
in a production unit. For that we need to inspect the structure of the model for
the production in terms of the driving inputs. In other words, we have to study the
structure of the polynomial f . A first representation is

f = −1.97x2
3−0.18x1x4−0.30x2x4 +2.37x3x4−0.16x2

4−0.36x1x5

+0.40x2x5−3.03x3x5−1.19x4x5 +0.32x2
5 +0.34x1−0.09x2

+4.03x3 +0.94x4 +0.68x5−0.36

Already at first glance we notice the dominant presence of x5 . As given in Ta-
ble 1.1, this indeterminate is related to the transport of the fluids through the tub-
ing at the surface. This comes rather unexpected, indeed almost as an unpleasant
surprise. For we have stated repeatedly the importance of the sub-surface for this
production problem, and also that the notorious interactions are taking place in the
neighborhood of the inflow from the reservoir into the production tubing of the well.
But now it seems an indeterminate related to the surface, far away from the reser-
voir, is a key element in all this? Well, this is the answer we instructed the algorithm
to find! Recall that the chosen term ordering is DegRevLex . Hence x5 is the inde-
terminate which is most unlikely to be a leading term of one of the polynomials in
the approximate border basis. In other words, it is the indeterminate which is most
likely to occur in many of the terms of O , and our method amounts to the attempt
to explain the data predominantly in terms of x5 .

Rather than continuing the attempt to reveal the significance of the above struc-
ture of f , we should therefore hasten to repair our “physical inconsistency”. To
do this, we have two options: we can either switch to a different term ordering or
we can change the physical interpretation of the indeterminates. To ease the com-
parison of the two models we get, we opt for the second method. The following
physical interpretation of the indeterminates acknowledges the “physical hierarchy”
of the system. We consider the polynomial ring R[y1, . . . ,y5] and let
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y1 : ∆Ptransport

y2 : ∆Ptub

y3 : Gas production

y4 : ∆Pinflow2

y5 : ∆Pinflow1

Table 1.2 New physical interpretation of the indeterminates.

For the role played by these indeterminates in the two-zone well we refer to
Figure 1.1. We repeat the calculation using the AVI algorithm with ε = 0.1 and
term ordering DegRevLex . The result is a polynomial g of the form

g = −5.35y3y2
5−0.73y4y2

5−0.21y3
5 +2.37y2y3−7.32y2

3−0.88y1y4−0.15y2y4

+0.34y3y4−0.55y2
4−2.20y1y5−0.35y2y5 +3.85y3y5 +0.67y4y5 +0.61y2

5

+0.62y1−0.26y2 +2.69y3 +0.98y4 +1.63y5−0.12

To judge the quality of this new model, we consider the differences of the eval-
uations of f and g at the points of X . We obtain the following Figure 1.8 which
shows that f − g vanishes approximately at X , apart from some spikes caused by
faults in the data due to instrumentation failures. Thus, from the numerical point of
view, the polynomial g is as good a model of the system as f .

2000 3000 4000 5000 6000 7000 8000

Sample Number t ==>

Difference between AVI results using different orders for the indeterminates
 

Fig. 1.8 Differences of the evaluations of two models.

Notice that also in g , the “last” indeterminate y5 plays a dominant role. However,
this time there is no physical inconsistency associated with this fact. Quite to the
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contrary, the terms in the support of the model, and in particular the factors we put
in parenthesis, have physical interpretations revealing the flow mechanisms inside
the well. Although a detailed discussion of these interpretations would exceed the
scope of this paper, it should be mentioned here that our findings have been assessed
positively in discussions with production engineers and have been confirmed by
dedicated field experiments.

There is, however, one aspect in this vein which warrants to be mentioned here.
Recall the brief discussion in Section 1.B of the commonly accepted procedure to
express the total production as a linear combination of the separate productions. The
terms y4y5 and y4y2

5 in the above polynomial g indicate that g cannot be written
as a linear combination of the separate productions which correspond to y4 and y5 .
Clearly, the inappropriate decomposition of the total production resulting from the
traditional procedures may have substantial consequences for the production strat-
egy used in the exploitation of the reservoir.

To wrap up the discussion, we note that the information about the two-zone well
captured in the data set X has been coded in merely 20 functions, namely the terms
in O . Using suitable linear combinations of these terms, we can find excellent es-
timators of the oil production of the two-zone well under different production con-
ditions. It should be stressed that such a physical interpretation can usually not be
given for linear combinations of terms contained in the expression of g , nor to the
individual monomials for that matter; in particular, their evaluations over X may
be negative or exceed physically meaningful bounds. In this sense, the terms in O
should be considered as purely mathematical states of the system into which the pro-
duction of the well can be decomposed. The structure of this decomposition reveals
deep insights into the production system which are only available via the described
modeling procedure based on the AVI algorithm.

1.5 Stable Order Ideals

There is nothing so stable as change.
(Bob Dylan)

1.5.A. The SOI Algorithm. In this subsection we consider the following setting.
Let X⊂Rn be a finite set of points whose coordinates are known only with limited
precision, and let

I (X) = { f ∈ R[x1, . . . ,xn] | f (p) = 0 for all p ∈ X}

be its vanishing ideal. Our goal is to compare the different residue class rings
P/I (X̃) where P = R[x1, . . . ,xn] and X̃ is an admissible perturbation of X , i.e.
a set made up of points differing by less than the data uncertainty from the corre-
sponding points of X .
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Given two distinct admissible perturbations X̃1 and X̃2 of X , it can happen that
their affine coordinate rings P/I (X̃1) and P/I (X̃2) as well as their vanishing
ideals I (X̃1) and I (X̃2) have very different bases – this is a well known phe-
nomenon in Gröbner basis theory. When dealing with a set X of empirical points,
a notion of “numerically stable” basis of the quotient ring P/I (X) is necessary. A
basis O ⊆ Tn is stable if its residue classes form a vector space basis of P/I (X̃)
for any admissible perturbation X̃ of the empirical set X . Furthermore, a stable or-
der ideal O provides a common characterization of the ideals I (X) and I (X̃) by
means of their O -border bases.

One way of dealing with the negative effects of data uncertainty is to replace
elements of X which differ from each other by less than the data accuracy with a
single representative point. This “preprocessing”, using for instance the algorithms
described in [1], may reduce the computational complexity but also loose infor-
mation contained in the data. In general, it is not sufficient to eliminate the insta-
bilities of exact bases of P/I (X) . However, if we are given a finite set X of s
well-separated empirical points, we can use the Stable Order Ideal (SOI) Algorithm
presented in this subsection. It computes a stable order ideal O , and if O contains
enough elements to form a basis of P/I (X) , the corresponding stable border basis
is also computed.

The following definition formalizes some concepts defined “empirically” in [30].

Definition 1.5.1. Let p = (c1, . . . ,cn) be a point in Rn and ε = (ε1, . . . ,εn)∈ (R+)n .
a) The pair (p,ε) is called an empirical point in Rn . We shall denote it also

by pε . The point p is called the specific value and ε is called the tolerance
of pε .

b) A point p̃ = (c̃1, . . . , c̃n) ∈ Rn is called an admissible perturbation of p if

‖((c̃1− c1)/ε1, . . . ,(c̃n− cn)/εn)‖ ≤ 1

c) Let Xε = {pε
1, . . . , pε

s} be a set of empirical points which share the same
tolerance ε , and let X = {p1, . . . , ps} be its specific value. A set of points
X̃ = { p̃1, . . . , p̃s} is called an admissible perturbation of X if each point p̃i
is an admissible perturbation of pi .

d) Let a set Xε = {pε
1, . . . , pε

s} of empirical points be given with specific values
pi = (ci1, . . . ,cin) . We introduce ns error indeterminates

e = (e11, . . . ,es1,e12, . . . ,es2, . . . ,e1n, . . . ,esn)

Then the set X̃(e) = { p̂1, . . . , p̂s} where p̂k = (ck1 +ek1, . . . ,ckn +ekn) is called
the generic perturbation of X .

Obviously, an admissible perturbation of X is obtained from the generic per-
turbation by substituting values ẽi j for the error indeterminates such that we have
‖(ẽi1/ε1, . . . , ẽin/εn)‖ ≤ 1.

Next we define the notion of stability for order ideals.
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Definition 1.5.2. Let O be an order ideal of Tn . The set O is called stable w.r.t. Xε

if the evaluation matrix evalX̃(O) has full rank for each admissible perturbation X̃
of X . Furthermore, if O is also a basis of P/I (X) , it is called a stable quotient
basis of I (X) .

Given any finite set of points X , any quotient basis O for I (X) is stable
w.r.t. Xδ for a sufficiently small value of the tolerance δ . This is equivalent to
saying that O has a “region of stability” w.r.t. X and follows from the next theo-
rem.

Theorem 1.5.3. Let X be a finite set of points in Rn and O a quotient basis
for I (X) . Then there exists a tolerance δ = (δ1, . . . ,δn) , with δi > 0 , such that O
is stable w.r.t. Xδ .

Proof. Let evalX(O) be the evaluation matrix of O at the points of X . Its entries
depend continuously on the points in X . By hypothesis, the set O is a quotient basis
for I (X) . It follows that evalX(O) is invertible. Recalling that the determinant is a
polynomial function in the matrix entries and noting that the entries of evalX(O) are
polynomials in the points’ coordinates, we can conclude that there exists a tolerance
δ = (δ1, . . . ,δn) ∈ (R+)n such that det(evalX̃(O)) 6= 0 for any perturbation X̃ of X
in Xδ . ut

Nevertheless, since the tolerance ε of the empirical points in Xε is given a pri-
ori by the measurements, Theorem 1.5.3 does not provide a direct answer to the
problem of stability. If the given tolerance ε for the points in X allows us to leave
the “region of stability” of a chosen quotient basis O , then O will not be stable
w.r.t. Xε . Such a situation is shown in the following example.

Example 1.5.4. Let X = {(0,2), (1,2.1), (2,1.9)} ⊆ R2 be a set of specified val-
ues. The order ideal O = {1,y,y2} is a basis of P/I (X) . Given the generic pertur-
bation

X̃(e) = {(0+ e11,2+ e12), (1+ e21,2.1+ e22), (2+ e31,1.9+ e32)}

the evaluation matrix of O at X̃(e) is the Vandermonde matrix

evalX̃(e)(O) =




1 2+ e12 (2+ e12)2

1 2.1+ e22 (2.1+ e22)2

1 1.9+ e32 (1.9+ e32)2




Since the matrix evalX̃(O) is invertible if and only if the values 2 + ẽ12 , 2.1 + ẽ22
and 1.9+ ẽ32 are pairwise distinct, we have that O is stable w.r.t. Xε if the tolerance
ε = (ε1,ε2) satisfies |ε2|< 0.1. Vice versa, if we consider X(δ1,δ2) , where δ2 > 0.1,
there exists the admissible perturbation X̃= {(0,2), (1,2), (2,2)} whose evaluation
matrix evalX̃(O) is singular. So, the order ideal O is not stable w.r.t. X(δ1,δ2) since
its “region of stability” is too small w.r.t. the given tolerance δ .
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Intuitively, a border basis G of the vanishing ideal I (X) is considered to be
structurally stable if, for each admissible perturbation X̃ of X , it is possible to pro-
duce a border basis G̃ of I (X̃) only by means of a slight and continuous variation
of the coefficients of the polynomials of G . This situation arises when G and G̃ are
founded on the same stable quotient basis O , as shown in the following theorem
(for a proof see [1]).

Theorem 1.5.5. Let Xε be a set of s distinct empirical points and O = {t1, . . . , ts} a
quotient basis for I (X) which is stable w.r.t. Xε . Then, for each admissible pertur-
bation X̃ of Xε , the vanishing ideal I (X̃) has an O -border basis G̃ . Furthermore,
if ∂O = {b1, . . . ,bν} is the border of O then G̃ consists of ν polynomials of the
form

g j = b j−
s

∑
i=1

αi jti for j ∈ {1, . . . ,ν}

where the coefficients ai j ∈ R satisfy the linear systems

evalX̃(b j) =
s

∑
i=1

αi j evalX̃(ti)

Note that the coefficients αi j of each polynomial g j ∈ G̃ are just the components
of the solution α j of the linear system evalX̃(O) α j = evalX̃(b j) . It follows that the
coefficients αi j are continuous functions of the coordinates of the points of X̃ . Since
the order ideal O is stable w.r.t. Xε , they undergo only continuous variations as X̃
changes. Now the definition of stable border bases follows naturally.

Definition 1.5.6. Let Xε be a finite set of distinct empirical points, and let O be
a quotient basis for the vanishing ideal I (X) . If O is stable w.r.t. Xε then the
O -border basis G of I (X) is said to be stable w.r.t. the set Xε .

Given X and a stable quotient basis O , it is possible to obtain a stable O -
border basis of I (X) by simple linear algebra computations. The SOI Algorithm
addresses the problem of finding a stable quotient basis as follows. As in the
Buchberger-Möller algorithm [6], the order ideal O is built stepwise: initially O
comprises just the term 1; then at each iteration, a new term t is considered. If the
evaluation matrix evalX̃(O ∪{t}) has full rank for all admissible perturbations X̃
then t is added to O ; otherwise t is added to the corner set of the order ideal.

The rank condition is equivalent to checking whether ρ(X̃) , the component of the
evaluation vector evalX̃(t) orthogonal to the column space of the matrix evalX̃(O) ,
vanishes for any admissible X̃ . In the following theorem this check is greatly sim-
plified by restricting it to first order error terms, as our interest is essentially focused
on small perturbations X̃ of X . In practice, the SOI algorithm solves an underde-
termined system to test whether the first order approximation of ρ(X̃) vanishes for
some admissible set X̃ .
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Theorem 1.5.7. (The Stable Order Ideal Algorithm (SOI))
Let Xε = {pε

1, . . . , pε
s} be a finite set of well-separated empirical points having a

common tolerance ε = (ε1, . . . ,εn) . Let σ be a term ordering on Tn and γ ≥ 0 .
Consider the following sequence of instructions.

S1 Start with the lists O = [1] , L = [x1, . . . ,xn] , the empty list C = [ ] , the matrix
M0 ∈ Mats×1(R) with all entries equal to 1 , and M1 ∈ Mats×1(R) with all
entries equal to 0 .

S2 If L = [ ] return the set O and stop. Otherwise, let t = minσ (L) and delete it
from L.

S3 Let v0 and v1 be the homogeneous components of degrees 0 and 1 of the
evaluation vector v = evalX̃(e)(t) . Compute the vectors

ρ0 = v0−M0α0

ρ1 = v1−M0α1−M1α0

where

α0 = (Mtr
0 M0)−1Mtr

0 v0

α1 = (Mtr
0 M0)−1(Mtr

0 v1 +Mtr
1 v0−Mtr

0 M1α0−Mtr
1 M0α0).

S4 Let Ct ∈Mats,sn(R) be such that ρ1 = Cte . Let k be the maximum integer such
that the matrix Ĉt , formed by selecting the first k rows of Ct , has minimum
singular value σ̂k greater than ‖ε‖ . Let ρ̂0 be the vector comprising the first k
elements of ρ0 , and let Ĉ†

t be the pseudoinverse of Ĉt . Compute δ̂ =−Ĉ†
t ρ̂0 ,

which is the minimal 2-norm solution of the underdetermined system Ĉt δ̂ =
−ρ̂0 .

S5 If ‖δ̂‖> (1+ γ)
√

s‖ε‖ , then adjoin the vector v0 as a new column of M0 and
the vector v1 as a new column of M1 . Append the power product t to O , and
add to L those elements of {x1t, . . . ,xnt} which are not multiples of an element
of L or C . Continue with step S2.

S6 Otherwise append t to the list C , and remove from L all multiples of t . Con-
tinue with step S2.

This is an algorithm which returns an order ideal O ⊂Tn . If for every admissible
perturbation X̃ the value γ satisfies ‖ρ2+(X̃)‖ ≤ γ

√
s‖ε‖2 , where ρ2+(X̃) is the

evaluation at X̃ of the component of ρ(X̃(e)) of degree greater than 1 , then O is an
order ideal which is stable w.r.t. the empirical set Xε . In particular, when #O = s ,
the ideal I (X) has a corresponding stable border basis w.r.t. Xε .

To implement the SOI Algorithm a value of γ has to be chosen even if an es-
timate of ‖ρ2+(X̃)‖ is unknown. Since we consider small perturbations X̃ of the
set X , in most cases ρ0 + ρ1(X̃) is a good linear approximation of ρ(X̃) . For this
reason ‖ρ2+(X̃)‖ is small and a value of γ ¿ 1 can be chosen to obtain a set O
which is stable w.r.t. Xε . On the other hand, if ρ is not well approximated by its
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homogeneous components of degrees 0 and 1 the strategy of the SOI algorithm
loses its meaning, since it is based on a first order analysis.

1.5.B. Comparison of the SOI and AVI Algorithms. Now we present some nu-
merical examples to show the effectiveness of the SOI and AVI algorithms. The first
two examples show how the algorithms detect simple geometrical configurations
almost satisfied by the given set X .

Example 1.5.8. (Four Almost Aligned Points)
Let Xε be a set of empirical points with the specified values

X= {(0, 0.01), (0.34, 0.32), (0.65, 0.68), (0.99, 1)} ⊆ R2

and the tolerance ε = (0.03,0.03) .
a) The SOI algorithm computes the quotient basis O = {1,y,y2,y3} which is

stable w.r.t. Xε . Hence we can compute the stable border basis G founded
on it and get

G =





x − 0.654y3 +1.013y2−1.362y+0.014
xy − 0.303y3−0.552y2−0.137y+0.001

xy2 − 1.16y3 +0.238y2−0.068y+0.001
xy3 − 2.094y3 +1.368y2−0.266y+0.002
y4 − 2.01y3−1.238y2−0.23y+0.002

The algorithm also yields the almost vanishing polynomial f = x− 0.984y .
This polynomial highlights the fact that X contains “almost aligned” points.
Since the quotient basis O is stable w.r.t. Xε , we can conclude that there ex-
ists a small perturbation X̃ of X containing aligned points and for which the
associated evaluation matrix evalX̃(O) is invertible. Notice that this fact is not
easily discernible from the computed border basis.
A further interesting polynomial is obtained by taking the difference of f and
the first border basis polynomial. The resulting polynomial h = 0.654y3 −
1.013y2 + 0.378y− 0.014 has small values at the points of X . This is not a
contradiction to the “almost linear independence” of O in the sense of [2],
since there is no admissible perturbation of X for which h vanishes. The cor-
rect interpretation is that there is an almost O -border prebasis close to the
computed O -border basis which is not an approximate O -border basis.

b) A completely different result is obtained by applying the Buchberger-Möller
algorithm to the set X . We use the same term ordering σ and obtain the fol-
lowing σ -Gröbner basis H of I (X) :

x2 − 5525/5324y2−30456/33275x+103649/106480y−6409/665500
xy − 1358/1331y2−15391/33275x+32811/66550y−8033/1663750
y3 − 205967/133100y2−1271124/831875x+1384811/665500y
− 429556/20796875
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The associated quotient basis is Oσ (I (X)) =T2\LTσ{I (X)}= {1,y,x,y2} .
We observe that Oσ (I (X)) is not stable because the matrix evalX̃(Oσ (I (X)))
is singular for some admissible perturbations of X . In particular, the informa-
tion that the points of X are “almost aligned” is not at all evident from H .

c) Finally, we apply the AVI algorithm to X . If we use ε = 0.05, we obtain the
quotient basis O = {1,y,y2} and as the approximate O -border basis

x − 0.984y
xy − 1.013y2 +0.03y−0.004

xy2 − 1.568y2 +0.614y−0.026
y3 − 1.556y2 +0.588y−0.023

Notice that the first and last polynomial generate the vanishing ideal of the
set of three points X′ = {(0.044,0.044), (0.522,0.529), (0.967,0.982)} . Thus
the “almost alignment” of X was correctly detected, and the algorithm found
a cubic curve passing close to all four points.
If instead we apply the AVI algorithm with ε = 0.03, which is approximately
the size of the data inaccuracies inherent in X , we get O = {1,y,y2,y3} and
the approximate border basis

x − 0.984y
xy − −1.013y2 +0.03y−0.004

xy2 − 1.16y3 +0.237y2−0.068y
xy3 − 2.094y3 +1.367y2−0.265y+0.002
y4 − 2.01y3 +1.237y2−0.229y+0.002

Here the ideal generated by the first and last polynomial corresponds to four
perfectly aligned points very close to the points of X .

In the following example we show the behavior of the SOI and AVI algorithms
when applied to two sets of points with similar geometrical configuration but with
different cardinality.

Example 1.5.9. (Points Close to a Circle)
Let X8 and X16 be sets of points created by perturbing slightly the coordinates of 8
and 16 points lying on the unit circle x2 + y2−1 = 0.

a) First we apply the SOI algorithm with tolerance ε = (0.01,0.01) . The fol-
lowing table summarizes the results. The first two columns contain the name
of the processed set and the value of its cardinality. The column labeled with
“Corners” refers to the set of corners of the stable order ideal computed by the
algorithm.
Note that the sets of corners of the stable quotient bases computed by the SOI
algorithm always contain the power product x2 . This means that there is a nu-
merical linear dependence among the empirical vectors associated to the power
products {1,y,x,y2,xy,x2} and that some useful information on the geometri-
cal configuration of the points could be found.



38 Kreuzer, Poulisse, Robbiano

Input #Xi #O (SOI) Corners (SOI) #O (AVI) Corners (AVI)

X8 8 8 {x2,xy3,y5} 8 {x2,xy3,y5}
X16 16 16 {x2,xy7,y9} 11 {x2,xy5,y6}

Table 1.3 SOI and AVI on sets of points close to a circle

If we enlarge the tolerances, however, already for ε = (0.04, 0.04) the SOI
algorithm finds no stable border basis for X16 anymore.

b) Now we apply the AVI algorithm. Since the points are near the unit circle, no
normalization is necessary. We use for instance ε = 0.06.
For X8 , we obtain the same order ideal O = {1,x,y,xy,y2,xy2,y3,y4} as the
SOI algorithm, and an approximate O -border basis containing {0.57x2 +
0.57y2 − 0.57, 0.89xy3 + 0.01y3 − 0.44xy− 0.01y, 0.53y5 − 0.79y3 + 0.26y} .
This shows that the circle close to the points has been detected.
Using X16 , we find the order ideal O = {1,x,y,xy,y2,xy2,y3,xy3,y4} and an
approximate border basis which contains 0.57x2 + 0.58y2 − 0.57. Again the
close-by unit circle has been detected, but there are also three sextics passing
close to the original 16 points. Unlike with the SOI algorithm, we find an ap-
proximate vanishing ideal of a smaller number (namely 11 instead of 16) of
points here.

Our next example shows that the term ordering σ used in the SOI Algorithm
is only an implementation detail. In general, any strategy that chooses the power
product t such that O ∪{t} is always an order ideal can be applied. The example
illustrates the case where σ can lead to an O -border basis which does not contain
the τ -Gröbner basis of I (X) for any term ordering τ . Similarly, the AVI algorithm
can be modified in such a way that the same property holds.

Example 1.5.10. (A Quotient Basis Not of Gröbner Type)
Let Xε be a set of distinct empirical points having

X= {(1,1), (0.82,−1), (−0.82,0.82), (−1,−0.82)}

as the set of specified values and ε = (0.1,0.1) as the tolerance.
a) Applying the SOI algorithm to Xε , we get the quotient basis O = {1,x,y,xy}

which is stable with respect to Xε . Let τ be any term ordering on Tn and
Oτ(I (X)) =Tn\LTτ{I (X)} the quotient basis associated to τ . We note that
we have O 6= Oτ(I (X)) here. In fact, according to τ , either x2 <τ xy or
y2 <τ xy . Furthermore, at least one of the two evaluation vectors evalX(x2) ,
evalX(y2) is linearly independent of {evalX(1), evalX(x), evalX(y)} so that
one of x2 or y2 must belong to Oτ(I (X)) . We conclude that the O -border
basis of I (X) does not contain any Gröbner basis of I (X) .

b) Next we start from the set X and use the AVI algorithm with ε = 0.1
and ε ′ = 0.01. The result is the order ideal O = {1,x,y,xy} and the (uni-
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tary) approximate border basis G = {0.76x2−0.15xy−0.62, 0.76y2−0.13x−
0.63, 0.76x2y−0.12x−0.62y, 0.76xy2−0.63x−0.11} .

Our final example illustrates that the order ideal O can have cardinality less
than s = #X both for the SOI and the AVI algorithm, but for different reasons. In
the case of the SOI algorithm this happens when the tolerance on the points is, in
some sense, too large. With a fixed set of specified values, the SOI algorithm may
produce different results for different values of ε , some of which do not span all
of P/I (X) . For the AVI algorithm, the computed order ideal may satisfy #O < s
even for small ε . The reason is that the algorithm may detect many low degree
polynomials vanishing ε -approximately at the given point, and those polynomials
may generate a zero-dimensional ideal of lower codimension.

Example 1.5.11. (Five Points Close to Two Conics and a Cubic)
Let X= {(0,1), (0.2,0.4), (0.28,0.28), (0.4,0.2), (1,0)} ⊂ R2 .

a) First we apply the SOI algorithm to the set of well-separated empirical points
Xε with specified values X and tolerance ε = (0.02,0.02) . We find the stable
order ideal O = {1,y,x,y2} . However, this is not a quotient basis, so we cannot
obtain the corresponding stable border basis. This is due to the fact that the
points of X lie close to the hyperbola xy+0.17x+0.14y−0.17 = 0, the ellipse
(x− 0.95)2 + 0.87(y− 1)2 − 0.9 = 0 and the cubic defined by the equation
y3− 1.8y2 + 0.23x− 1.03y− 0.23 = 0. So, if the tolerance ε is too big, they
“almost satisfy” all of them.
Observe how the problem does not arise if we use a smaller tolerance, e.g.
δ = (0.01,0.01) . Applying SOI to Xδ , we obtain the stable quotient basis
O ′ = {1,y,x,xy,y2} and its corresponding border basis

G′ =





x2 + 3.83xy+ y2−1.23x−1.23y+0.23
y3 − 0.07xy−1.8y2 +0.22x+1.02y−0.22

xy2 − 0.07xy+0.2y2−0.05x−0.25y+0.05
x2y − 0.84xy−0.2y2 +0.19y

b) Next we use the AVI algorithm. Choosing ε = 0.06, we get O = {1,x,y} and
the (unitary) approximate border basis

G =





0.52x2 − 0.77x−0.25y+0.25
0.94xy + 0.18x+0.18y−0.18
0.51y2 − 0.26x−0.77y+0.26

The same result is produced for any 0.06 ≤ ε ≤ 0.25. The set G approxi-
mates a system of generators of the vanishing ideal I (X̃) of the point set
X̃ = {(0,0.98), (0.28,0.29), (0.98,0)} . Notice that X̃ is approximately con-
tained in all three conics.
A smaller choice of ε , for instance ε = 0.01, leads to O ′ = {1,x,y,y2} and
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G′ =





0.3x2 + 0.3y2−0.6x−0.6y+0.3
0.94xy + 0.18x+0.18y−0.18

0.95xy2 + 0.19y2−0.03x−0.22y+0.03
0.42y3 − 0.77y2 +0.1x+0.44y−0.1

The set G′ approximates a system of generators of I (X̃′) for X̃′ = {(0,0.99),
(0.21,0.37), (0.37,0.21), (0.99,0)} . Thus even this small choice of ε leads to
a decrease in the codimension of the corresponding I (X) .

1.6 Border Basis and Gröbner Basis Schemes

Without geometry,
life is pointless.
(Sam Wormley)

Let O = {t1, . . . , tµ} be an order ideal in Tn . In this section we define a moduli
space, called the border basis scheme, for all zero-dimensional ideals which have an
O -border basis. Then we define another space, called the Gröbner basis scheme, and
explore their main properties, their connection to problems concerning approximate
data, and their connection to Hilbert schemes of zero-dimensional schemes.

1.6.A. Two Basic Examples. Before starting with the technical details, we intro-
duce two basic examples which will help us to understand the general theory.

Example 1.6.1. (Three Non-Collinear Points)
In this example we want to represent all zero-dimensional subschemes of A2

K which
share the property that the residue classes of the elements in O = {1,x,y} form a
K -vector space basis of their coordinate ring. Another way of saying this is that
we want to represent all ideals I in P = K[x,y] such that the residue classes of the
elements in O form a K -basis of P/I .

............................... ................

........

.......................

................

x

y

• •
•
◦
◦
◦

In this picture the elements of O = {1,x,y} are represented by bullets. Knowing
that their residue classes form a K -vector space basis of P/I implies, in particular,
that the elements represented by circles, i.e. x2 , xy , y2 can be expressed modulo I
as linear combinations of the elements in O . In other words, the ideal I has to
contain three polynomials of the form g1 = x2− c11− c21x− c31y , g2 = xy− c12−
c22x− c32y , and g3 = y2− c13− c23x− c33y for suitable values of the coefficients
ci j ∈ K .
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But, of course, this is not the end of the discussion. For instance, the unit ideal
contains such polynomials, but {1,x,y} is not a basis modulo it. To achieve this
property, we observe that {1,x,y} is an order ideal of monomials and that the com-
plementary monomial ideal is generated by {x2,xy,y2} . If σ is a degree-compatible
term ordering, for instance σ = DegRevLex , we have LTσ (g1) = x2 , LTσ (g2) = xy ,
and LTσ (g3) = y2 , independent of the values of the coefficients ci j .

Macaulay’s Basis Theorem (see [20], Theorem 1.5.7) implies that we have
dimK(P/I) = dimK(P/LTσ (I)) , and we want that this number is three. On the other
hand, we have dimK(P/(x2,xy,y2)) = 3. Hence we want that LTσ (I) = (x2,xy,y2) .
In other words, we want to impose that {g1,g2,g3} is a σ -Gröbner basis of I . Due
to the particular shape of the equations involved, this requirement is equivalent to
imposing that {g1,g2,g3} is the reduced σ -Gröbner basis of I .

How do we do that? There are two non-trivial fundamental syzygies of the tu-
ple of terms (x2,xy,y2) , namely (−y,x,0) and (0,−y,x) . First we consider the
S-polynomial −yg1 + xg2 = c11y + c21xy + c31y2 − c12x− c22x2 − c32xy . Using
g1,g2,g3 , it can be rewritten as

(c21c12 + c31c13− c22c11− c32c12)+(−c12 + c31c23− c32c22)x

+(c11 + c21c32 + c31c33− c22c31− c2
32)y

Second, we consider the S-polynomial −yg2 +xg3 = c12y+c22xy+c32y2−c13x−
c23x2− c33xy . Using g1,g2,g3 , it can be rewritten as

(c22c12 + c32c13− c23c11− c33c12)+(−c13 + c2
22 + c32c23− c23c21− c33c22)x

+(c12 + c22c32− c23c31)y

Imposing that {g1,g2,g3} is the reduced σ -Gröbner basis of I is therefore equiva-
lent to imposing that the following expressions are all zero:

F1 = c21c12 + c31c13− c22c11− c32c12

F2 = −c12 + c31c23− c32c22

F3 = c11 + c21c32 + c31c33− c22c31− c2
32

F4 = c22c12 + c32c13− c23c11− c33c12

F5 = −c13 + c2
22 + c32c23− c23c21− c33c22

F6 = c12 + c22c32− c23c31

Let J be the ideal of K[c11, . . . ,c33] generated by {F1,F2,F3,F4,F5,F6} . We
note the equality F6 = −F2 = c12 + c22c32 − c23c31 and check with CoCoA that
J = (F2,F3,F5) . By mapping c11 to −c21c32−c31c33 +c22c31 +c2

32 , c12 to c31c23−
c32c22 , and c13 to c2

22 + c32c23− c23c21− c33c22 , we define an isomorphism

K[c11, . . . ,c33]/J ∼−→ K[c21,c31,c22,c32,c23,c33]
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The conclusion is that all zero-dimensional subschemes of A2
K which have the prop-

erty that the residue classes of the elements in {1,x,y} form a K -vector space basis
of their coordinate ring are parametrized by an affine space A6

K . Their vanishing
ideals are generated by polynomials {g1,g2,g3} where

g1 = x2− (−c21c32− c31c33 + c22c31 + c2
32)− c21x− c31y

g2 = xy− (c31c23− c32c22)− c22x− c32y
g3 = y2− (c2

22 + c32c23− c23c21− c33c22)− c23x− c33y

and the parameters which show up in these three polynomials can vary freely. Notice
that this family contains only one monomial ideal, namely (x2,xy,y2) .

To summarize this discussion, we note that we found the parametrizing scheme
A6

K by imposing that certain fundamental syzygies lift properly. This process is far
from canonical. Nevertheless, it can be shown that the output is independent of the
choices made (see [28], Proposition 3.5).

Furthermore, we observe that the dimension of the parameter space is six. How
can we explain this number? We could argue as follows. Among the ideals repre-
sented by the family, there are the vanishing ideals of three non-collinear points.
(For three collinear points, the set {1,x,y} would not be linearly independent mod-
ulo their vanishing ideal.) Clearly, to represent three points in the affine plane one
needs six independent coordinates. But we have to be careful: this argument does
not work in general! Indeed, we cannot exclude a priori the existence of a compo-
nent of the parameter space of higher dimension. In other words, we do not know a
priori whether degenerate schemes which have {1,x,y} as a basis of their coordi-
nate ring can be represented as limits of sets of three distinct points. It turns out that
this is true in our example, but not for more complicated order ideals O . A similar
counterintuitive situation arises in automatic theorem proving (see for instance [21],
Section 6.7).

The next interesting case is the order ideal O = {1,x,y,xy} in T2 .

Example 1.6.2. (Four Points)
As in the example before, we would like to parametrize all zero-dimensional sub-
schemes of A2

K such that the residue classes of the elements in O = {1,x,y,xy}
form a K -vector space basis of their coordinate ring.
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Let us try to argue as in the preceding example. The complement of the set O
is the monomial ideal generated by {x2,y2} . Thus we want LTσ (I) = (x2, y2) .
However, at this point we encounter a serious problem: no matter which term or-
dering we choose, it is not possible that both x2 and y2 are bigger than xy . The
best we can do is to pick a degree-compatible term ordering, say σ = DegRevLex ,
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and use two polynomials of the form g1 = x2 − c11 − c21x− c31y− c41xy and
g2 = y2−c12−c22x−c32y . Then, for every choice of the parameters ci j ∈K , the set
{g1,g2} is the reduced σ -Gröbner basis of an ideal I such that the residue classes
of the elements in {1,x,y,xy} form a K -vector space basis of P/I .

Here we have seven free parameters. But four points in the affine plane need
eight parameters to describe them completely. This shows that our Gröbner basis
approach is not sufficient. A better way to proceed is to consider the border of the
given order ideal. Its elements are marked by circles in the above picture. We rep-
resent every element in the border as a generic linear combination of {1,x,y,xy}
and impose that the given generic border prebasis is a border basis. In this way
we obtain a set of equations which define an 8-dimensional moduli scheme (see
Example 1.6.14).

1.6.B. Border Basis Schemes. The above examples indicate that border bases are
well suited for describing families of affine subschemes of An whose coordinate
rings have a given K -basis. In fact, they do the job better than Gröbner bases. It is
time to provide the precise definitions and technical details necessary for the theo-
retical foundation of these observations.

Definition 1.6.3. Let O = {t1, . . . , tµ} be an order ideal, let ∂O = {b1, . . . ,bν} , and
let {ci j | 1≤ i≤ µ, 1≤ j ≤ ν} be a set of new indeterminates.

a) The generic O -border prebasis is the set of polynomials G = {g1, . . . ,gν}
in K[x1, . . . ,xn,c11, . . . ,cµν ] given by

g j = b j−
µ
∑

i=1
ci jti for j = 1, . . . ,ν

b) For k = 1, . . . ,n , let Ak ∈ Matµ(K[ci j]) be the kth formal multiplication ma-
trix associated to G (cf. [21], Def. 6.4.29). It is also called the kth generic
multiplication matrix with respect to O .

c) The affine scheme BO ⊆ Aµν defined by the ideal I(BO) which is generated
by the entries of the matrices AkA`−A`Ak with 1 ≤ k < ` ≤ n is called the
O -border basis scheme.

d) The coordinate ring K[c11, . . . ,cµν ]/I(BO) of the scheme BO will be denoted
by BO .

We observe that, by definition, the ideal I(BO) is generated by polynomials of
degree two. By [21], Thm. 6.4.30, a point (αi j) ∈ Kµν yields a border basis σ(G)
when we apply the substitution σ(ci j) = αi j to G if and only if σ(Ak)σ(A`) =
σ(A`)σ(Ak) for 1≤ k < `≤ n . Therefore the K -rational points of BO are in 1–1
correspondence with the O -border bases of zero-dimensional ideals in P , and thus
with all zero-dimensional ideals having an O -border basis.

In the following remark, we collect some basic properties of border basis schemes.

Remark 1.6.4. Let O be an order ideal in Tn , and let BO be the O -border basis
scheme.
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a) There is an irreducible component of BO of dimension nµ which is the closure
of the set of radical ideals having an O -border basis.

b) There is an example by Iarrobino (see [23] and [22], Example 5.6) which ex-
hibits a border basis scheme having an irreducible component whose dimen-
sion is higher than nµ .

c) For every term ordering σ , there is a subset of BO which parametrizes all
ideals I such that O = Oσ (I) . These subsets have turned out to be useful for
studying the Hilbert scheme parametrizing subschemes of An of length µ (see
for instance [7] and [27]).

d) In the case n = 2 more precise information about BO is available: for in-
stance, it is known that BO is reduced, irreducible and smooth of dimension
2µ (see [13], [15] and [24], Ch. 18).

Our next remark clarifies the relation between border basis schemes and Hilbert
schemes.

Remark 1.6.5. For an order ideal O in Tn , the border basis scheme BO can be
embedded as an open affine subscheme of the Hilbert scheme parametrizing sub-
schemes of An of length µ (see [24], Section 18.4). This can be seen as follows.

Let IO be the monomial ideal generated by the complement of O . The Hilbert
polynomial of P/IO is the constant polynomial µ . Among all schemes having this
Hilbert polynomial there are the schemes for which O yields a basis of their coor-
dinate ring. This condition defines a Zariski open subset.

As usual, a moduli space such as the border basis scheme comes together with a
universal flat family. In the present setting it is defined as follows.

Definition 1.6.6. Let G = {g1, . . . ,gν} ⊂ K[x1, . . . ,xn,c11, . . . ,cµν ] with g j = b j−
∑µ

i=1 ci jti for j = 1, . . . ,ν be the generic O -border prebasis. We will denote the
ring K[x1, . . . ,xn,c11, . . . ,cµν ]/(I(BO)+ (g1, . . . ,gν)) by UO . Then the natural ho-
momorphism of K -algebras

Φ : BO −→ UO
∼= BO [x1, . . . ,xn]/(g1, . . . ,gν)

is called the universal O -border basis family.

What are the fibers of this family? It is easy to understand that they are the quo-
tient rings P/I for which I is a zero-dimensional ideal which has an O -border basis.
The special fiber, i.e. the fiber corresponding to (0, . . . ,0) , is the ring P/(∂O) . It
is the only fiber in the family which is defined by a monomial ideal. A remarkable
result is the following.

Theorem 1.6.7. (The Universal Border Basis Family)
Let Φ : BO −→UO be the universal O -border basis family. Then the residue classes
of the elements of O are a BO -module basis of UO . In particular, the map Φ is a
flat homomorphism.

Proof. See [11] or [16]. For an elementary proof see [22], Theorem 3.4. ut
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Let us have a look at the first consequences of this fundamental result. A ra-
tional curve on the O -border basis scheme corresponds to a surjective K -algebra
homomorphism Ψ : BO −→K[z] of the corresponding affine coordinate rings. If we
restrict the universal family of O -border bases to this rational curve, we obtain the
following flat deformation of border bases.

Corollary 1.6.8. Let z be a new indeterminate, and let Ψ : BO −→K[z] be a surjec-
tive homomorphism of K -algebras. By applying the base change Ψ to the universal
family Φ , we get a homomorphism of K[z]-algebras

ΦK[z] = Φ⊗BO
K[z] : K[z]−→UO ⊗BO

K[z]

Then the residue classes of the elements of O form a K[z]-module basis of the
right-hand side. In particular, the map ΦK[z] defines a flat family.

As explained in [22], this corollary can be used to construct flat deformations
over K[z] of border bases. Suppose the maximal ideal Ψ−1(z− 1) corresponds to
a given O -border basis and the maximal ideal Ψ−1(z) is the ideal (c11, . . . ,cµν)
which corresponds to the border term ideal (b1, . . . ,bν) . In other words, sup-
pose that there exists a rational curve which connects the given point to the point
(0, . . . ,0) . Then the map ΦK[z] defines a flat family over K[z] whose generic fiber
P/I is defined by the ideal I generated by the given O -border basis and whose
special fiber P/(b1, . . . ,bν) is defined by the border term ideal.

In the next part of this subsection we try to construct explicit flat deformations
to the border term ideal. The idea is to imitate the method used in Gröbner basis
theory, namely the technique of homogenization. The first step is to deform to a
suitable degree form ideal.

Lemma 1.6.9. Let P be graded by a matrix W ∈ Matm,n(Z) , let O be an order
ideal in Tn , and let I ⊂ P be a homogeneous ideal which has an O -border basis.
Then this O -border basis of I consists of homogeneous polynomials.

Proof. See [22], Lemma 2.3. ut
As for the idea to deform a border basis of I to a homogeneous border basis of

the degree form ideal DFW (I) , we have the following result.

Theorem 1.6.10. (Deformation to the Degree Form Ideal)
Let W = (w1, . . . ,wn) ∈Mat1,n(N+) be a row of positive integers, let P be graded
by W , and let I ⊂ P be a zero-dimensional ideal. Then the following conditions are
equivalent.

a) The ideal I has an O -border basis, say G = {g1, . . . ,gν} , and we have b j ∈
Supp(DFW (g j)) for j = 1, . . . ,ν .

b) The degree form ideal DFW (I) has an O -border basis.

If these conditions are satisfied, the O -border basis of DFW (I) is DFW (G) =
{DFW (g1), . . . ,DFW (gs)} and there is a flat family K[x0]−→ P/I hom whose gen-
eral fiber is isomorphic to P/I , where I = (g1, . . . ,gν) , and whose special fiber is
isomorphic to P/DFW (I) , where DFW (I) = (DFW (g1), . . . ,DFW (gν)) .
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Proof. See [22], Theorem 2.4. ut
Let us look at an example for the application of this theorem.

Example 1.6.11. Consider the ideal I = (−2x2 +xy−y2−1, 8y3 +10x+9y) in the
polynomial ring P =Q[x,y] . The degree form ideal of I with respect to the standard
grading, i.e. the grading defined by W = (1 1) , is DFW (I) = (−2x2 + xy− y2, y3) .
We want to use the order ideal O = {1,x,x2,x3,y,y2} whose border is given by
∂O = {xy,y3,xy2,x2y,x3y,x4} .
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It is easy to check that DFW (I) has an O -border basis, namely H = {h1, . . . ,h6}

with h1 = xy− 2x2− y2 , h2 = y3 , h3 = xy2 + 4x3 , h4 = x2y + 2x3 , h5 = x3y , and
h6 = x4 . Therefore the theorem says that I has an O -border basis G = {g1, . . . ,g6} ,
and that hi = DFW (gi) for i = 1, . . . ,6. Indeed, if we compute this border basis we
find that it is given by g1 = xy−2x2− y2−1, g2 = y3 + 5

4 x+ 9
8 y , g3 = xy2 +4x3 +

3
4 x− 1

8 y , g4 = x2y+2x3− 1
4 x− 1

8 y , g5 = x3y− 1
2 x2− 1

8 y2− 3
32 , and g6 = x4− 1

64 .

An easy modification of this example shows that the implication “a) =⇒ b)” in
the theorem is not true without the hypothesis b j ∈ Supp(DFW (g j)) . This observa-
tion inspires the following definition.

Definition 1.6.12. Let P be graded by a matrix W ∈Mat1,n(N+) . The order ideal O
is said to have a maxdegW border if degW (b j) ≥ degW (ti) for i = 1, . . . ,µ and
j = 1, . . . ,ν . In other words, no term in O is allowed to have a degree larger than
any term in the border.

Using this notion, we can combine the deformation given by the theorem with a
second deformation from the degree form ideal to the border term ideal by using the
following result.

Theorem 1.6.13. (Homogeneous Maxdeg Border Bases)
Suppose that the order ideal O has a maxdegW border. Let I⊂P be a homogeneous
ideal which has an O -border basis G = {g1, . . . ,gν} . Then there exists a flat family
K[z]−→ K[z][x1, . . . ,xn]/J such that O is a K[z]-basis of the right-hand side, such
that J|z 7→1 ∼= I , and such that J|z 7→0 ∼= (b1, . . . ,bν) . In fact, the ideal J may be
defined by writing g j = b j−∑µ

i=1 ci jti and replacing ci j ∈ K by ci j z ∈ K[z] for all
i, j .

Proof. See [22], Theorem 5.3. ut
To get a good grasp of these deformations, we look at one particular border basis

scheme in detail, namely the one corresponding to Example 1.6.2.
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Example 1.6.14. Consider the case n = 2 and O = {1,x,y,xy} . The border of O is
∂O = {y2,x2,xy2,x2y} , so that in our terminology we have µ = 4, ν = 4, t1 = 1,
t2 = x , t3 = y , t4 = xy , b1 = y2 , b2 = x2 , b3 = xy2 , and b4 = x2y .

The generic multiplication matrices are

Ax =




0 c12 0 c14
1 c22 0 c24
0 c32 0 c34
0 c42 1 c44


 and Ay =




0 0 c11 c13
0 0 c21 c23
1 0 c31 c33
0 1 c41 c43




When we compute the ideal generated by the entries of AxAy−AyAx and sim-
plify its system of generators, we see that the ideal I(BO) is generated by

{c23c41c42− c21c42c43 + c21c44 + c11− c23, −c21c32− c34c41 + c33,
c34c41c42− c32c41c44 + c32c43 + c12− c34, −c21c32− c23c42 + c24,
−c23c32c41 + c21c32c43− c21c34 + c13, c21c42 + c41c44 + c31− c43,
−c21c34c42 + c21c32c44− c23c32 + c14, c32c41 + c42c43 + c22− c44}

Thus there are eight free indeterminates, namely c21 , c23 , c32 , c34 , c41 , c42 , c43 ,
and c44 , while the remaining indeterminates depend on the free ones by the poly-
nomial expressions above. From this we conclude that the border basis scheme BO

is an affine cell of the corresponding Hilbert scheme, i.e. an open subset which is
isomorphic to an affine space.

Its coordinate ring is explicitly represented by the isomorphism

BO
∼−→ K[c21,c23,c32,c34,c41,c42,c43,c44]

given by
c11 7−→ −c23c41c42 + c21c42c43− c21c44 + c23
c12 7−→ −c34c41c42 + c32c41c44− c32c43 + c34
c13 7−→ c23c32c41− c21c32c43 + c21c34
c14 7−→ c21c34c42− c21c32c44 + c23c32
c22 7−→ −c32c41− c42c43 + c44
c24 7−→ c21c32 + c23c42
c31 7−→ −c21c42− c41c44 + c43
c33 7−→ c21c32 + c34c41

Hence we have UO
∼= K[x,y,c21,c23,c32,c34,c41,c42,c43,c44]/(g̃1, g̃2, g̃3, g̃4) where
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g̃1 = y2− (−c23c41c42 + c21c42c43− c21c44 + c23)
−c21x− (−c21c42− c41c44 + c43)y− c41xy,

g̃2 = x2− (−c34c41c42 + c32c41c44− c32c43 + c34)
−(−c32c41− c42c43 + c44)x− c32y− c42xy,

g̃3 = xy2− (c23c32c41− c21c32c43 + c21c34)
−c23x− (c21c32 + c34c41)y− c43xy,

g̃4 = x2y− (c21c34c42− c21c32c44 + c23c32)
−(c21c32 + c23c42)x− c34y− c44xy,

The ideal (g̃1, g̃2, g̃3, g̃4) is the defining ideal of the family of all subschemes of
length four of the affine plane which have the property that their coordinate ring
admits O as a vector space basis. Since the border basis scheme is isomorphic to
an affine space in this case, we can connect every point to the point corresponding
to (x2,y2) by a rational curve. Therefore every ideal in the family can be deformed
by a flat deformation to the monomial ideal (x2,y2) . Algebraically, it suffices to
substitute each free indeterminate ci j with zci j where z is a new indeterminate.
This yields the K -algebra homomorphism

ΦK[z] : K[z]−→ K[x,y,z,c21,c23,c32,c34,c41,c42,c43,c44]/(g1,g2,g3,g4)

where

g1 = y2− (−z3c23c41c42 + z3c21c42c43− z2c21c44 + zc23)
−zc21x− (−z2c21c42− z2c41c44 + zc43)y− zc41xy,

g2 = x2− (−z3c34c41c42 + z3c32c41c44− z2c32c43 + zc34)
−(−z2c32c41− z2c42c43 + zc44)x− zc32y− zc42xy,

g3 = xy2− (z3c23c32c41− z3c21c32c43 + z2c21c34)
−zc23x− (z2c21c32 + z2c34c41)y− zc43xy,

g4 = x2y− (z3c21c34c42− z3c21c32c44 + z2c23c32)
−(z2c21c32 + z2c23c42)x− zc34y− zc44xy,

By Corollary 1.6.8, the homomorphism ΦK[z] is flat. For every point on the border
basis scheme, it induces a flat deformation from the corresponding coordinate ring
P/I to P/(∂O) where the border term ideal is (∂O) = (y2,x2,xy2,x2y) = (x2,y2) .

Finally, we want to draw the connection between border basis schemes and the
approximate border bases defined in Section 4.

Remark 1.6.15. Let O = {t1, . . . , tµ} be an order ideal in Tn and ∂O = {b1, . . . ,bν}
its border.
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a) An approximate O -border basis G = {g1, . . . ,gν} with g j = b j −
µ
∑

i=1
ai jti , as

defined in Section 4, yields a point (ai j)∈Rµν which is close to the O -border
basis scheme. In fact, in Definition 1.4.7 we required that the normal remain-
ders of the S-polynomials of neighbor syzygies are small. This implies that the
coefficients of these normal remainders are small, and those coefficients are
precisely the evaluations of the defining equations of BO at (ai j) .

b) The AVI algorithm computes an approximate O -border basis. As mentioned
above, this corresponds to a point p close to the border basis scheme. There-
fore it is natural to ask how one can find an exact O -border basis defined
over Q , i.e. a rational point on BO which is close to p . This problem, called
the rational recovery problem, will be addressed in [19].

1.6.C. Gröbner Basis Schemes. In the first subsection we tried to use the shape
of a Gröbner basis in order to parametrize families of zero-dimensional ideals, but
we encountered difficulties. Then we saw that border bases are more suited for this
purpose. Now we return to the Gröbner basis approach and try to put it in relation
to the border basis technique. To this end, we plan to define (O,σ)-Gröbner basis
schemes.

Before we start the discussion, some extra bits of notation are required. Given an
order ideal O = {t1, . . . , tµ} , the set of minimal generators of the monoideal Tn \O
(which are also called the corners of O ) is denoted by cO , and we let η be the
cardinality of cO . Since cO ⊆ ∂O , it follows that η ≤ ν . Without loss of generality,
we label the elements in ∂O so that cO = {b1, . . . ,bη} .

Next we let σ be a term ordering on Tn . Recall that, for an ideal I in the
polynomial ring P , we denote the order ideal Tn \LTσ (I) by Oσ (I) . Moreover,
we denote by SO,σ the set {ci j ∈ {c11, . . . ,cµν} | b j >σ ti} , by LO,σ the ideal
generated by {c11, . . . ,cµν} \ SO,σ in K[c11, . . . ,cµν ] , by ScO,σ the intersection
SO,σ ∩{c11, . . . ,cµη} , and by LcO,σ the ideal generated by {c11, . . . ,cµη} \ ScO,σ
in K[c11, . . . ,cµη ] . Furthermore, we denote the cardinality of ScO,σ by s(cO,σ) .

Definition 1.6.16. For j = 1, . . . ,ν , we define a polnomial g∗j by

g∗j = b j− ∑
{i | b j>σ ti}

ci jti = b j− ∑
ci j∈SO,σ∩{c1 j ,...,cµ j}

ci jti

a) The set of polynomials {g∗1, . . . ,g
∗
η} is called the generic (O,σ)-Gröbner

prebasis.
b) The ideal

(
LO,σ + I(BO)

)∩K[ScO,σ ] of K[ScO,σ ] defines an affine subscheme
of As(cO,σ) which will be denoted by GO,σ and called the(O,σ)-Gröbner
basis scheme. Its defining ideal

(
LO,σ + I(BO)

)∩K[ScO,σ ] will be denoted
by I(GO,σ ) and its coordinate ring K[ScO,σ ]/I(GO,σ ) by GO,σ .

Notice that the polynomial g∗j is obtained from g j by setting all indeterminates
in LO,σ ∩{c1 j, . . . ,cµ j} to zero.
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What is the relation between Gröbner basis schemes and border basis schemes?
Well, by now it should be clear that a Gröbner basis scheme is a closed subscheme
of the corresponding border basis scheme.

Example 1.6.17. Let us examine the inclusion cO ⊆ ∂O . If O = {1,x,y,xy} then
cO = {x2,y2} while ∂O = {x2,y2,x2y,xy2} , so that cO ⊂ ∂O . On the other hand,
if O = {1,x,y} then cO = ∂O = {x2,xy,y2} .

Returning to O = {1,x,y,xy} we have t1 = 1, t2 = x , t3 = y , t4 = xy , b1 = x2 ,
b2 = y2 , b3 = x2y , b4 = xy2 . Let σ = DegRevLex , so that x >σ y . Then we get
LO,σ = LcO,σ = (c42) , g∗1 = g1 , g∗2 = y2−(c12 +c22x+c32y) , g∗3 = g3 , and g∗4 = g4 .

Having introduced the Gröbner basis scheme, we define a naturally associated
universal family. We recall that K[x1, . . . ,xn,c11, . . . ,cµν ]/

(
I(BO) + (g1, . . . ,gν)

)
was denoted by UO in Definition 1.6.6, and the natural homomorphism of K -
algebras Φ : BO −→UO was called the universal O -border basis family.

Definition 1.6.18. The ring K[x1, . . . ,xn,ScO,σ ]/
(
I(GO,σ ) + (g∗1, . . . ,g

∗
η)

)
will be

denoted by UO,σ .
a) The natural homomorphism of K -algebras Ψ : GO,σ −→UO,σ is called the

universal (O,σ)-Gröbner basis family.
b) The induced homomorphism of K -algebras BO/LO,σ −→ UO/LO,σ will be

denoted by Φ .

The next result shows than Gröbner basis schemes have a very nice property
which is not shared by some border basis schemes. To help the reader, we simply
write x for x1, . . . ,xn and c for c11, . . .cµν .

Theorem 1.6.19. There exists a system W of positive weights on the elements of
ScO,σ , a system W of positive weights on the elements of SO,σ , and a system V of
positive weights on x such that the following conditions hold true.

a) The system W is an extension of the system W.
b) The ideal I(GO,σ ) in K[ScO,σ ] is W -homogeneous.
c) The ideal I(GO,σ )+(g∗1, . . . ,g

∗
η) in K[x,ScO,σ ] is (V,W )-homogeneous.

d) The image of I(BO) in K[SO,σ ]∼= K[c]/LO,σ is W -homogeneous.
e) The image of I(BO) + (g∗1, . . . ,g

∗
ν) in the ring K[x,SO,σ ] ∼= K[x,c]/LO,σ is

(V,W )-homogeneous.

Proof. See [28], Theorem 2.8.

In other words, this theorem says that a Gröbner basis scheme has an intrinsic
graded structure. It follows that it is isomorphic to an affine space if and only if
the point corresponding to the unique monomial ideal is smooth (see [28], Corol-
lary 3.7). Moreover, Gröbner basis schemes are connected. The analogous result for
border basis schemes is not known. (A partial result is that if O has a maxdegW bor-
der, then BO is connected. This follows by combining Theorem 1.6.10 with [22],
Theorem 5.3.)
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Our next goal is to make the connection between Gröbner and border basis
schemes more explicit. We recall the equality I(GO) =

(
LO,σ + I(BO)

)∩K[ScO,σ ]
which yields the homomorphism ϕ below. A further homomorphism ϑ is obtained
as follows: let Θ : K[x,ScO,σ ] −→ K[x,c] be the natural inclusion of polynomial
rings. Then clearly I(GO,σ )+(g∗1, . . . ,g

∗
η)⊆Θ−1

(
LO,σ + I(BO)+(g1, . . .gν)

)
.

Now we consider the following commutative diagram of canonical homomor-
phisms.

GO,σ
ϕ−→ BO/LO,σ

yΨ
yΦ

UO,σ
ϑ−→ UO/LO,σ

Using explicit representations, this diagram has the following form.

K[ScO,σ ]/I(GO,σ )
ϕ−→ K[c]/

(
LO,σ + I(BO)

)

yΨ
yΦ

K[x,ScO,σ ]/
(
I(GO,σ )+(g∗1, . . . ,g

∗
η)

) ϑ−→ K[x,c]/
(
LO,σ + I(BO)+(g1, . . .gν)

)

At this point we are ready for the following fundamental results about Gröbner
basis schemes.

Theorem 1.6.20. (Gröbner Basis and Border Basis Schemes)
Let O = {t1, . . . , tµ} be an order ideal of monomials, and let σ be a term ordering
on Tn .

a) The classes of the elements in O form a BO/LO,σ -module basis of UO/LO,σ .
b) The classes of the elements in O form a GO,σ -module basis of UO,σ .
c) We have I(GO,σ )+(g∗1, . . . ,g

∗
η) = ϑ−1

(
LO,σ + I(BO)+(g1, . . .gν)

)
.

d) The maps ϕ and ϑ in the above diagram are isomorphisms.

Proof. See [28], Theorem 2.9.

Corollary 1.6.21. Let O = {t1, . . . , tµ} be an order ideal of monomials in P and let
σ be a term ordering on Tn .

a) The affine scheme GO,σ parametrizes all zero-dimensional ideals I in P for
which O = Oσ (I) .

b) The fibers over the K -rational points of the universal (O,σ) Gröbner fam-
ily Ψ : GO,σ −→ UO,σ are the quotient rings P/I for which I is a zero-
dimensional ideal with the property that O = Oσ (I) . Moreover, the reduced
σ -Gröbner basis of I is obtained by specializing the (O,σ)-Gröbner preba-
sis {g∗1, . . . ,g

∗
η} to the corresponding maximal linear ideal.

Proof. See [28]. Corollary 2.11.
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Finally, we reformulate these results in the language of algebraic geometry.

Remark 1.6.22. There is a commutative diagram

GO,σ ∼= Spec(BO/LO,σ )

xπΨ

xπΦ

Spec(UO,σ ) ∼= Spec(UO/LO,σ )

of affine schemes, but more can be said. Let W , W , and V be systems of positive
weights, chosen suitably to satisfy Theorem 1.6.19. Then GO,σ is a W -graded ring,
BO is a W -graded ring, UO,σ is a (V,W )-graded ring, and UO/LO,σ is a (V,W )-
graded ring.

Hence we see that the above diagram gives rise to a diagram

Proj(GO,σ ) ∼= Proj(BO/LO,σ )

xΠΨ

xΠΦ

Proj(UO,σ ) ∼= Proj(UO/LO,σ )

of projective schemes such that Proj(GO,σ )⊂ P(W ) , Proj(BO/LO,σ ) ⊂ P(W ) ,
Proj(UO,σ )⊂P(V,W ) , and Proj(UO/LO,σ )⊂P(V,W ) . The corresponding weighted
projective spaces are denoted by P(W ) , P(W ) , P(V,W ) , and P(V,W ) .

Moreover, let p = (ai j)∈GO,σ be a rational point, let I⊂P be the corresponding
ideal according to Corollary 1.6.21, let vi = deg(xi) in the V -grading, and let wi j =
deg(ci j) in the W -grading. Then it is well-known that the substitution ai j −→ twi j ai j
gives rise to a flat family of ideals whose general fibers are ideals isomorphic to I ,
and whose special fiber is the monomial ideal LTσ (I) . In the setting of the first
diagram, the rational monomial curve which parametrizes this family is a curve in
GO,σ which connects the two points representing I and LTσ (I) . In the setting of
the second diagram, the rational monomial curve is simply a point in Proj(GO,σ )⊂
P(W ) , which represents all of these ideals except for the special one.

In [28], Section 3, the relation between the construction of I(GO) and other
constructions described in the literature (see for instance [7] and [27]) is discussed.
Our next remark collects the main points.

Remark 1.6.23. Starting with the generic σ -Gröbner prebasis {g∗1, . . . ,g
∗
η} , one

can construct an affine subscheme of As(cO,σ) in the following way. As in the
Buchberger Algorithm, one reduces the critical pairs of the leading terms of the
σ -Gröbner prebasis as much as possible. The reduction stops when a polynomial
is obtained which is a linear combination of the elements in O with coefficients
in K[ScO,σ ] . Collecting all coefficients obtained in this way for all the critical pairs,
one gets a set of polynomials which generates an ideal J in K[ScO,σ ] . Clearly, every
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zero of J gives rise to a specialization of the generic σ -Gröbner prebasis which is,
by construction, the reduced σ -Gröbner basis of a zero-dimensional ideal I in P
for which we have O = Oσ (I) .

However, this procedure is not canonical, since for instance the choice of the
critical pairs to be reduced and the order of the reduction steps is not fixed. Based on
the construction presented in this subsection, one can show that all possible ideals J
define the same scheme, namely the one defined in Definition 1.6.16.

Another interesting problem is to look for conditions under which the two
schemes GO,σ and BO are isomorphic. Proposition 3.11 of [28] yields a partial
answer. Essentially, it says the following.

Proposition 1.6.24. Let O be an order ideal and σ a term ordering on Tn, and
assume that the order ideal O is a σ -cornercut, i.e. that we have b >σ t for
every b ∈ cO and every t ∈ O . Then the canonical embedding of K[SO,σ ] into
K[c11, . . . ,cµν ] induces an isomorphism between GO,σ and BO .

The study of border basis and Gröbner basis schemes is still in its infancy. There
are many open questions, for instance whether the converse of the preceding propo-
sition holds, or whether border basis schemes are always connected. Although our
journey from oil fields to Hilbert schemes ends here, the topics we discussed offer
many possibilities to continue it in various directions.

When you have completed 95 percent of your journey,
you are only halfway there.

(Japanese proverb)
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