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Abstract

Explicit computations are presented to calculate in a real inner prod-
uct space the metric projection on - a translate of - a finitely generated
convex cone. This result is then used in the Boyle-Dijkstra Theorem to
compute in this setting the best approximation from a set of scaled affine
combinations.

1 Introduction

We start by formulating the problem addressed in this paper, followed by the
motivation to investigate it.
A computable solution is presented for the following problem:

Given a real inner product space X with inner product 〈· , · 〉 : X × X → R,
given a finite set of linearly independent elements of X

Y = { y1, . . . , yn } (1)

and given the collections of real numbers α1, . . . , αn and β1, . . . , βn with αi < βi

and given the set

Γ = {χ ∈ Rn | (χ)i ∈ [αi, βi] , i = 1, . . . , n } (2)

with [αi, βi] a closed interval in R, find the best approximation - see definition 2
below - to an element x ∈ X from the set

H = { y ∈ X | y =
n∑

i=1

γiyi , yi ∈ Y , γ ∈ Γ , γi = (γ)i } (3)

The element x ∈ X, the space X, and the sets Y , H , Γ and the real numbers
{αi} and {βi} are fixed throughout this paper, and so we avoid unnecessary rep-
etitions of these objects in the different statements that follow.

To place the definition of the set H in perspective, recall the following defi-
nition - see [2], [6] or [8]:
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Definition 1 Let A be a non-empty subset of the inner product space X. The
affine hull aff (A) of A is the set of all affine combinations of A:

aff (A) = {y ∈ X | y =
m∑

i=1

τiai , ai ∈ A , τi ∈ R ,

m∑

i=1

τi = 1 , m ∈ N }

y ∈ H can be written in the following way: y = γσ

∑n
i=1 γ̄iyi ( yi ∈ Y , γ =

(γi) ∈ Γ , γσ =
∑n

i γi , (γ̄i) = (γi/γσ) ). Hence

H ⊂ Λaff (Y)

where Λ = [
∑n

i=1 αi,
∑n

i=1 βi] ⊂ R , i.e. H is a set of scaled, affine combinations.
In particular H is a closed, convex subset of X.

Following F. Deutsch [6], the best approximation is defined in the following
way:

Definition 2 Let A be a nonempty subset of the inner product space X, and
let x ∈ X. An element a0 ∈ A is called a best approximation to x from A if
‖x− a0‖ = infa∈A ‖x− a‖ , where ‖ · ‖ is the norm induced by the inner product
on X.
The set of all best approximations to x ∈ X from A is denoted by PA(x). The
mapping PA from X into the subsets of A is called the metric projection onto A.
If each x ∈ X has exactly one best approximation in A, i.e. PA(x) is a singleton,
then A is called a Chebyshev set.

The problem stated above is important in many technical applications. In [10]
an application is given in oil - and gas production operations.
Explicit computations of approximations from closed convex sets, including
closed convex cones are sparse in the literature, as opposed to those from
- translates of - subspaces - see F. Deutsch [6] and J-B. Hiriart-Urruty and
C. Lemaréchal [8]. Our contribution is that we give an explicit computation of
the metric projection on a finitely generated convex cone, and this result is used
subsequently to compute the best approximation from the set H.
We refer to F. Deutsch [6] and also D. Amir [1] for the importance of choosing
the inner product space setting.
The rest of this paper is organized in the following way: in the next section we
explore the mathematical setting of our problem with special attention for the
linear independence assumption of Y in (1), this is then followed by an explicit
computation of the metric projection on - a translate of - a finitely generated
convex cone, and finally in the last section we compute the best approximation
from the convex set H.
Continuing a line of argument until a computable solution is clearly ‘visible’ is
pursued throughout this paper.
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2 A Mathematical Inventory

To find the best approximation from H we have to reveal the geometric structure
of our problem description. A good start in this respect is the observation that
the convexity of H means that it is equivalent to its convex hull co(H) - see [6]:

H = co(H) (4)

:= { y ∈ X | y =
m∑

i=1

τihi , hi ∈ H , τi ∈ R+ ,

m∑

i=1

τi = 1 , m ∈ N }

where R+ denotes the set of non-negative real numbers. The crucial role played
by the set Y from equation (1) is substantiated in the following result, which is
the famous Carathéodory theorem from Rn - see [2] or [8] - in our setting.

Theorem 1 Every element y ∈ H can be written as a convex combination of
n + 1 elements h1, . . . , hn+1 from H:

y =
n+1∑

i=1

νihi ,

n+1∑

i=1

νi = 1, νi ≥ 0 (5)

Proof: Every y ∈ H can be written as a convex combination y =
∑m

i=1 νihi of
some elements h1, . . . , hm of H. We can assume that νi > 0 for all i = 1, . . . ,m.
If m < n + 1, we can always add terms 0hi to get a convex combination with
n+ 1 terms. Now suppose that m > n+ 1. Consider the following equations in
the real variables κ1, . . . , κm:

m∑

i=1

κihi = 0 &
m∑

i=1

κi = 0 (6)

Using equation (3) each hi has the following representation in terms of the
yi ∈ Y:

hi =
n∑

j=1

γi
jyj ( γi ∈ Γ , (γi)j = γi

j , i ∈ {1, . . . ,m} ) (7)

Because the set Y is linearly independent, equations (6) are equivalent to the
following system of linear equations in κ1, . . . , κm:




γ1
1 · · · γm

1

. . . . . . . . . . . . .
γ1

n · · · γm
n

1 · · · 1







κ1

. . . . .
κm−1

κm


 = 0 (8)

From this moment on our proof follows the one given by A. Barvinok [2] in a
Rn setting; we present the details for easy reference. Because m > n+ 1 there
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must be a non-trivial solution κ1, . . . , κm, and because
∑m

i=1 κi = 0, some κi

are strictly positive, and some are strictly negative. Let

µ = min{νi/κi | κi > 0 } = νi0/κi0

Define ν̃i = νi − µκi (i = 1, . . . ,m) ⇒ ν̃i ≥ 0 ∀ i and ν̃i0 = 0, and we compute∑m
i=1 ν̃i =

∑m
i=1 νi−µ

∑m
i=1 κi = 1, and

∑m
i=1 ν̃ihi =

∑m
i=1 νihi−µ

∑m
i=1 κihi =

y. So apparently we can write y as a convex combination of m − 1 rather than
m points - hi0 is omitted. Iterating this procedure, we obtain y as a convex
combination of n+ 1 or fewer points. �

Now our goal is to come to explicit calculations of the metric projection onto H,
and this means that sooner or later we have to resort to a basis for H. The prob-
lem with the previous result is that it does not provide a basis for H. So maybe
we can find an environment of H that offers a sufficiently rich relative topology
for H. The most obvious choice in this respect would seem the ambient space
X of H. But although X provides its extremely powerful inner product plus all
geometric ramifications associated with it, it does not qualify as a convenient
’working’ environment for H because it is not specific enough. Therefore it may
be a better idea to start at the other end, i.e. starting from H. And then a nat-
ural way to proceed would seem lifting the restrictions on the coefficients in the
convex hull representation of H in equation (4). If we leave out the restriction
that the coefficients must sum up to 1, we arrive at the conical hull con(H) of
H:

con(H) = {y ∈ X | y =
m∑

i=1

τihi , hi ∈ H , τi ∈ R+ , m ∈ N } (9)

To give an interpretation of con(H), we need the following definition:

Definition 3 A subset C of X is called a convex cone if ρy + τz ∈ C whenever
y, z ∈ C and ρ, τ ∈ R+

con(H) is the intersection of all convex cones that contain H - see [6] or [8]. In
convex analysis convex cones are intermediate between subspaces and general
convex sets, and that means that they tend to have properties that are somewhat
closer to the more favorable properties of subspaces than those of general convex
sets. Our first observation seems promising in this respect: from (9) it follows
that 0 ∈ con(H). Because we did not assume that 0 ∈ Γ, it is unknown whether
H contains 0. This is immediately an improvement of con(H) over H, for in view
of our ambition to come up with an explicit calculation of the metric projection
onto H, we will doubtlessly need the ‘reference point’ 0. The improvement is
however not sufficient for con(H) to qualify as working environment for H, since
on comparing equations (4) and (9) it follows that

con(H) = R+co(H) = R+H (10)
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So basically con(H) is a scaled version of H, and hence from our perspective this
does not give us what we are looking for. Lifting instead the other restriction on
the coefficients in (4) gives yet another hull of H, namely the affine hull aff (H)
of H, the set of all affine combinations of elements of H - see definition 1. If we
compare aff (H) and con(H) it follows that we may have lost our reference point
0 again. To assess the importance of this observation, we need the following
definition:

Definition 4 Let A be a non-empty subset of X. The subspace spanned by A
denoted by span(A) is the set of all finite linear combinations of elements of A,
i.e.

span(A) = {y ∈ X | y =
m∑

i=1

τiai , ai ∈ A , τi ∈ R , m ∈ N }

If A consists of a finite number of elements, i.e. A = {a1, . . . , ak}, span(A) is
finite dimensional, and a maximal, linearly independent subset of {a1, . . . , ak}
is a basis of span(A).

span(H) is the smallest subspace of X that contains H. Note by the way that
span(H) evolves from co(H) in equation (4) by lifting all restrictions on the real
coefficients. With respect to ordering by set inclusion aff (H) is closer to H than
span(H) because of the additional requirement on the coefficients in aff (H).
On the other hand if 0 ∈ H, then aff (H) = span(H) - see R. Webster [11] or
F. Deutsch [6]. Hence

span(H) = aff (H ∪ {0}) (11)

The following proposition relates this H environment to data from our problem
description:

Proposition 1
aff (H ∪ {0}) = span(H) = span(Y)

Proof: H ⊂ Λaff (Y) ⇒ span(H) ⊂ span(Y). Conversely let y =
∑n

i=1 τiyi ∈
span(Y). Choose n linearly independent Rn vectors γj ∈ Γ (j = 1, . . . , n).
Clearly this is always possible since αi < βi (cf. equation (2)). Then y =∑n

i=1 θihi ∈ span(H) where θ = (θi) ∈ Rn is the unique solution of the following
system of linear equations:



γ1
1 · · · γn

1

. . . . . . . . . . . .
γ1

n · · · γn
n






θ1
. .
θn


 =



τ1
. .
τn




Hence span(Y) ⊂ span(H) �

So we finally settle for the finite dimensional subspace S = span(Y) as our
convenient working environment for H, because it is the object in X closest to
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H that provides a known basis.

We now digress a little to discuss a topic that is in particular of importance
in applications. After all, claiming a ‘computable’ solution for the metric pro-
jection onto H for ‘clean’ situations only, may not be that convincing. The
point here is that dropping the linear independence assumption on Y in (1) may
lead to inconsistencies in our problem setting - see subsection 2.1. Specifically
in applications where the yi may result from some estimation procedure, lin-
ear dependence of the yi is likely to occur. There may be practical reasons in
trying to express the to be approximated element x ∈ X in principle in all yi

despite linear dependence among them. Therefore we discuss how one could
deal with this situation in our current setting. We would like to add that a
more elegant way than the one presented here to deal with a possible linear
independence in the family {yi} is to note that they are always a frame for S -
see O. Christensen [5]. In particular the inconsistencies referred to above would
then be avoided; the results following this route will be published separately.
We note that this type of linear dependence problems is treated in the literature
on convex analysis along our current lines, but mostly in a Rn setting where it
has less consequences.

2.1 Linear Dependence

The results in this subsection depend on the dimension of S = span(Y); this
is emphasized through the notation used in this subsection, in that all relevant
objects have appropriate super - and/or sub indices related to dim(S). Specif-
ically Y, Γ, andH from equations (1) - (3) are in this subsection denoted by,
respectively Yn, Γn, and Hn.
Suppose

dim(S) = m < n

- A good way to check the dimension of S is to construct through the Gram-
Schmidt orthogonalization process - see e.g. [6] - the maximal orthonormal set
from Yn. - Then only m out of the n elements of Yn constitute a basis for S.
Without loss of generality we may assume the first m elements to be a basis :

Ym = { yi ∈ Yn | i ∈ {1, . . . ,m} } (12)

We can express the elements of Yn \ Ym in those of Ym:

yj = ζj
1y1 + · · ·+ ζj

mym ( j = m+ 1, . . . , n , ζj
i ∈ R ) (13)

The ζj
i in equation (13) depend on Ym ∪{yj} via the normal equations - see F.

Deutsch [6]:

G(y1, . . . , ym)ζj = θj ( j = m+ 1, . . . , n ) (14)
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where the elements of m ×m Gram matrix G(y1, . . . , ym) and the elements of
the Rm vectors ζj and θj are given by respectively

(G(y1, . . . , ym))i,k = 〈 yk, yi 〉 ( i, k = 1, . . . ,m ) (15)

(ζj)i = ζj
i ( i = 1, . . . ,m )

(θj )i = 〈 yj , yi 〉 ( i = 1, . . . ,m )

Because Ym is linearly independent det(G(y1, . . . , ym)) > 0 - see e.g. [6] - and
so equation (14) gives a unique solution ζj ∀j. Furthermore

yj 6= 0 ⇒ θj 6= 0 ⇒ at least one of the ζj
i 6= 0 ∀ j (16)

If we would not have made the linear independence assumption in (1), then from
equations (3) and (13) it follows that for some γ ∈ Γn we have

∑n
i=1 γiyi =∑m

i=1(γi +
∑n

j=m+1 γjζ
j
i )yi and so

∑n
i=1 γiyi ∈ Hn, whereas we may very well

have that
∑m

i=1(γi +
∑n

j=m+1 γjζ
j
i )yi /∈ Hn, first of all because we did not

assume that 0 ∈ Γn, and secondly, even if this would be the case, there is no
guarantee that (γi +

∑n
j=m+1 γjζ

j
i ) ∈ [αi, βi] since X and hence also Yn are

completely arbitrary. Such a situation, resulting from the fact that Hn is a set
but not a subspace, is of course absurd.
We now describe a proper way to handle this case in our setting. For i = 1, . . . ,m
consider the functionals fi : Rn−m → R and moreover the sets Γn−m

n and Γm
n

defined by, respectively

fi(χ) =
n−m∑

j=1

ζj+m
i χj (17)

Γn−m
n = {χ ∈ Rn−m | (χ)i ∈ [αi+m, βi+m] , i = 1, . . . , n−m }
Γm

n = {χ ∈ Rm | (χ)i ∈ [αi, βi] , i = 1, . . . ,m }

Define

{1, . . . ,m} = Im1 ∪ Im2 (18)
|Im1 | + |Im2 | = m1 +m2 = m ( 0 < m1 ≤ m )

i ∈

{
Im1 if ζj+m

i 6= 0 for some j ∈ {1, . . . , n−m}
Im2 otherwise

with | · | referring to the number of elements. Recall the following definition:

Definition 5 Let (· , · ) : Rk × Rk → R be the inner product in Rk for some
k ≥ 1. Let η1, . . . , ηl be vectors from Rk and let θ1, . . . , θl be numbers. The set
Π = {χ ∈ Rk | (ηi, χ) ≤ θi ( i = 1, . . . , l ) } is called a polyhedron. The i-th
inequality from the previous equation is called active for χ ∈ Π if (ηi, χ) = θi.
χv ∈ Π is a vertex of Π if for any two points χ1, χ2 ∈ Π such that χv =
(χ1 + χ2)/2 we must have χv = χ1 = χ2.
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The sets Γn−m
n and Γm

n are polyhedra, for, denoting by {ξ1, . . . , ξn−m} the
‘canonical’ basis in Rn−m, where each ξi has coordinates (0, . . . , 0, 1, 0, . . ., 0)
(the “1” in the ith position), the defining polyhedral inequalities for Γn−m

n are
(χ,−ξi) ≤ −αi+m , (χ, ξi) ≤ βi+m (i = 1, . . . , n−m), and likewise for Γm

n . The
parameter l in definition 5 is 2(n−m) for Γn−m

n and 2m for Γm
n . For i ∈ Im1 the

fi are linear functionals. They can be interpreted as describing the deformation
in the ’scaled barycentric’ - adapted terminology from [11] and [8] - coefficients
γi of the elements yi ∈ Ym in Hn in equation (3) when they must also cater for
the contribution of the elements from (Yn \ Ym).
Of course we would like to know what the maximal ’deformations’ are. Clearly
the fi ( i ∈ Im1 ) assume their unique minimum - and maximum value on the
compact, convex set Γn−m

n :

αmin
i =

{
min{fi(χ) | χ ∈ Γn−m

n } if i ∈ Im1

0 if i ∈ Im2

(19)

βmax
i =

{
max{fi(χ) | χ ∈ Γn−m

n } if i ∈ Im1

0 if i ∈ Im2

Intuitively one expects that, under the given conditions, it must be possible to
be more specific about these extremes. In this respect we have the following
Theorem, the first part of which is stated in A. Barvinok [2] as a corollary to the
finite dimensional version of the Krein-Milman Theorem - which is according to
J-B. Hiriart-Urruty and C. Lemaréchal [8] due to Hermann Minkowski - whereas
the second part follows directly from the fact that for a vertex in a polyhedron
at least n−m of the 2(n−m) inequalities describing the polyhedron Γn−m

n are
active - see [2] or [8]:

Theorem 2

(1) Let i ∈ Im1 . There exist vertices χv
1, χ

v
2 ∈ Γn−m

n such that

αmin
i = fi(χv

1)
βmax

i = fi(χv
2)

(2) For j = 1, . . . , n−m

χv
1j

=

{
αj+m if ζj+m

i ≥ 0
βj+m otherwise

, χv
2j

=

{
βj+m if ζj+m

i ≥ 0
αj+m otherwise �

Note that we are not interested in describing the solution sets for αmin
i and

βmax
i ; the vertices are points of these solution sets. Theorem 2 shows how to

calculate the values in (19). Alternatively one could mechanize this computation
by casting (19) as linear programming problems - see R. Webster [11] for details.
We refer to [10] for an example where these calculations are performed in a
specific application.
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The decomposition of Yn in Ym ∪ (Yn \ Ym) is reflected in the scaled affine
combinations of the {yi} in the following way:

Hm
n = { y =

m∑

i=1

γiyi | yi ∈ Ym ⊂ Yn , γ ∈ Γm
n , , γi = (γ)i }

Hn−m
n = { y =

n∑

i=m+1

γiyi | yi ∈ Yn \ Ym , γ ∈ Γn−m
n , γi = (γ)i }

The set of scaled affine combinations for the current situation

Hm = { y =
n∑

i=1

γiyi | yi ∈ Yn , γ ∈ Γn , γi = (γ)i , dim(span(Yn)) = m < n }

but represented in terms of the linear independent set Ym now follows directly:

Proposition 2

Hm = { y =
m∑

i=1

γiyi | yi ∈ Ym , γ ∈ Γm , γi = (γ)i } (20)

Γm = {χ ∈ Rm | (χ)i ∈ [αn−m
i , βn−m

i ] , i = 1, . . . ,m }

αn−m
i =

{
αi if αmin

i ≥ 0
αi + αmin

i otherwise
, βn−m

i =

{
βi if βmax

i ≤ 0
βi + βmax

i otherwise

Proof: Compute

Hm
n + Hn−m

n =
⋃

{Hm
n + z | z ∈ Hn−m

n } = Hm �

Denoting a best approximation to x ∈ X from Hm in equation (20), if such an
approximation exists, by x̂, it can be represented in the following way:

x̂ =
m∑

i=1

γ̂iyi ( γ̂ ∈ Γm , γ̂i = (γ̂)i , yi ∈ Ym ) (21)

Casting this result in terms of the ‘original’ linearly dependent set Yn leads to
the following under-determined system of m equations in the n unknowns γi:

Aγ = γ̂ (γ ∈ Γn) (22)

where the m × n matrix A is, as a result of our construction given in equation
(13), directly in reduced row-echelon form:

A = (Im F) (23)
(F)i,j = ζj+m

i ( i = 1, . . . ,m , j = 1, . . . , n−m )
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with Im the m × m identity matrix of Rm. In view of equation (18) F may
have m2 rows with zeros. To focus first on objects having an index from Im1

we introduce the following notation:

γ̃ = ((γ̂)i | i ∈ Im1 ) ( γ̃ an m1 × 1 vector) (24)
Ã = (Im1 F̃)
F̃ = ((F)i,j | i ∈ Im1 , j = 1, . . . , n−m ) ( F̃ an m1 × (n−m) matrix)

Γ̃m = {χ ∈ Rm1 | (χ)i ∈ [αn−m
i , βn−m

i ] , i ∈ Im1 }
Γ̃n = {χ ∈ Rn−m2 | (χ)i ∈ [αi, βi] , i ∈ {1, . . . , n} \ Im2 }

Note that in view of equation (16) all columns of F̃ contain at least one element
different from zero. Instead of equation (22) we now have

Ãγ = γ̃ (γ ∈ Γ̃n ;
∑

i∈{1,...,n}\Im2

γiyi =
∑

i∈Im1

γ̃iyi , γi = (γ)i , γ̃i = (γ̃)i) (25)

The image I(Ã) of Γ̃n under A and the null space of Ã, N (Ã), are given by,
respectively

I(Ã) = ÃΓ̃n = Γ̃m (26)

N (Ã) = span{col{N}} = span
{

col
{(

−F̃
In−m

)}}

where col{(·)} refers to the set of column vectors. In using the word image, we
have followed John Lee’s terminology [9] here, where the word range would be
reserved for ÃRn−m2 .
The first equation in (26) results directly from our construction of Γm from Γn

as given in Proposition 2. Since γ̃ ∈ Γ̃m = I(Ã), the linear system (25) is
consistent, i.e. has a solution for γ - see [3] or [8].
As for the second equation (26) we note that the column vectors of the matrix
N are linearly independent, and hence form a basis for N (Ã). If γp ∈ Γ̃n is any
particular solution of (25), then the solution to equation (25) is given by the
set (γp +N (Ã))∩ Γ̃n. From the consistency of the linear system (25) it follows
that this set is not empty.
Clearly the structure of our problem is coded in I(Ã) and N (Ã).
So what we would like to do in order to translate our approximation result γ̂
from equation (21) from the ’deformed’ set Hm into a result from the ‘original’
set Hn is calculating the generalized inverse - see [3] - of Ã in equation (25)
acknowledging its prescribed image I(Ã) and null space N (Ã). For, a part of
the solution, that we denote by γm2

0 , can be read off directly from equation (22):

γm2
0 =

{
((γ̂)i | i ∈ Im2 ) if m2 > 0
∅ if m2 = 0

(27)
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whereas for the ‘rest’ of the solution we would have γ in equation (25) expressed
in terms of γ̃, while at the same time this representation honors the structure of
our problem. Representations for the generalized inverse of Ã with prescribed
image and null space are not available, but they are for prescribed range and null
space - see A. Ben-Israel and T. Greville [3]. And in that case the generalized
inverse is the Moore-Penrose - or pseudo inverse; the solution associated with
this inverse is the unique minimum norm solution. The minimum norm solution
of equation (25), denoted by γn−m2

0 , is characterized in the following way: de-
note the set of solutions to min{

∥∥∥Ãγ − γ̃
∥∥∥

2,m1

| γ ∈ Γ̃n ;
∑

i∈{1,...,n}\Im2
γiyi =

∑
i∈Im1

γ̃iyi} by:

∆ = Argmin{
∥∥∥Ãγ − γ̃

∥∥∥
2,m1

| γ ∈ Γ̃n ;
∑

i∈{1,...,n}\Im2

γiyi =
∑

i∈Im1

γ̃iyi} (28)

The set ∆ ⊂ Rn−m2 is closed and convex, and hence has a unique element of
minimal norm:

γn−m2
0 ∈ ∆ ,

∥∥γn−m2
0

∥∥
2,n−m2

≤ ‖γ‖2,n−m2
∀ γ ∈ ∆ (29)

The actual calculations to obtain γn−m2
0 can be performed in several ways; we

refer to Å. Björck [4] for an overview in the realm of least squares solutions, and
to [10] where such calculations are performed in a specific application. True,
using equations (28) and (29) we have not obtained a representation for the
pseudo inverse of Ã, but we did obtain the solution associated with it.
Writing

γ0 =
(

γm2
0

γn−m2
0

)
(30)

and denoting its reordering according to {1, . . . , n} also by γ0, the approximate
solution of the best approximation of x ∈ X to Hm - equation (20) - in terms of
the elements of the linearly dependent set Yn reads as follows:

x̂ =
n∑

i=1

γ0iyi ( γ0i = (γ0)i ) (31)

For the sequel of this paper we assume that Y is linearly independent and hence
we suppress again all sub - and super indices related to dim(S).

2.2 Exploring the Setting

That S = span(Y) is really a convenient environment for H specifically in rela-
tion with finding the metric projection onto it, is substantiated in the following
result taken from F. Deutsch [6]:
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Theorem 3

(1) Every closed, convex subset of S is Chebyshev.

(2) S itself is Chebyshev. �

So in particular H is Chebyshev, i.e. our problem stated in section 1 has a
unique solution.
Before giving a convenient characterization of metric projections - see also
definition 2 - onto a convex set in an inner product space, we need the following
definition - [6] or [8]:

Definition 6 Let A be a nonempty subset of X. The dual cone of A is the set

A0 = {x ∈ X | 〈x, a〉 ≤ 0 ∀a ∈ A }

Theorem 4 Let h ∈ H. Then

h = PH(x) ⇔ x− h ∈ (H − h)0 �

For a proof we refer to [6] or [8]. So apparently to find the metric projection,
we need to calculate the dual cone of a translate of H. Alternatively, the set H
can be described in terms of the metric projections onto it - [6]:

H = { y ∈ X | PH(y) = y } (32)

But calculating (H − h)0 does not seem to be very tractable. So apart from
seeking a convenient environment for H, we must in addition find a more man-
ageable structure for H in this environment.
This leads to the idea to decompose H in such a way that the different parts
of this decomposition allow a relatively straightforward calculation of the met-
ric projection onto them, and then hopefully we can re-combine the different
metric projections to infer from them the metric projection onto H. Clearly
we should decompose H into convex parts. Recall that we noticed in section 2
when discussing the conical hull con(H) of H that specifically convex cones are
convenient objects in convex analysis. Now the ‘source’ of H is the set Y, con-
sisting of a finite number of elements. We have in this connection the following
useful result:

Proposition 3

(1) The conical hull of Y, con(Y), is a finitely generated cone, i.e.

con(Y) = { y ∈ X | y =
n∑

i=1

τiyi , yi ∈ Y , τi ∈ R+ }

(2) y + con(Y) is Chebyshev for any y ∈ S

Proof:

(1) see [6].
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(2) If con(Y) is Chebyshev, then so is its translate - see [6] - and so in view of
the first part of theorem 3 we need to show that con(Y) is closed. This
is proved in [8] as one of the lemma’s of J. Farkas in a Rn-setting and,
in particular because the {yi} are linearly independent, can be translated
to our setting. In [6] a very nice proof is presented in our inner product
space setting. Both references consider the situation where there may be
linear dependence among the generators of the conical hull. �

con(Y) would be a very desirable ‘building block’ in our decomposition plan for
H. The following result shows that it is:

Proposition 4 Let

ymin =
n∑

i=1

αiyi , ymax =
n∑

i=1

βiyi

W = {wi ∈ X | wi = −yi , yi ∈ Y }

then

H = (ymin + con(Y)) ∩ (ymax − con(Y))
= (ymin + con(Y)) ∩ (ymax + con(W))

Proof:

H = {y ∈ X | y =
n∑

i=1

γiyi , αi ≤ γi ≤ βi }

= {y ∈ X | y =
n∑

i=1

γiyi , γi ≥ αi } ∩ {y ∈ X | y =
n∑

i=1

γiyi , γi ≤ βi }

{y ∈ X | y =
n∑

i=1

γiyi , γi ≥ αi } =

{y ∈ X | y =
n∑

i=1

(γi − αi)yi + ymin , γi ≥ αi } =

ymin + {y ∈ X | y =
n∑

i=1

τiyi , τi ≥ 0 } = ymin + con(Y)

Likewise the other component of H �
The decomposition of H is in two translated convex cones not unique. Indeed,
there are 2(n−1) − 1 other similar decompositions. Because the translated cones
in these decompositions play an important role in the sequel of this paper, we
present them here as a corollary to proposition 4. But before we are in a position
to do that, we need to introduce some additional mathematical objects. The
following definition is taken from F. Deutsch [6]:
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Definition 7 h ∈ H is an extreme point of H, if f, g ∈ H, 0 < λ < 1, and
h = λf + (1 − λ)g implies f = g = h.

With reference to this definition, we introduce the set of extreme points of H:

E = {r1, . . . , r2
n

| rj =
n∑

i=1

ψj
i yi ; yi ∈ Y , ψj

i = {αi or βi} , j = 1, . . . , 2n ,

ψj
i 6= ψk

i (j 6= k) } (33)

Apparently ymin , ymax ∈ E. The pair of extreme points {ymin, ymax} belongs
to the pairs of opposite extreme points of H that we define next:

Definition 8 {rj, rk} (rj , rk ∈ E , j 6= k ) is a pair of opposite extreme points
of H if ψj

i 6= ψk
i ∀ i

Without loss of generality we may assume that the set E is ordered in such a way
that {{r2j−1, r2j} | j = 1, . . . , 2n−1} are the opposite pairs of E; in particular
we assume that {r1, r2} = {ymin, ymax}.

Definition 9 The translated convex cone associated with the extreme point rj ∈
E is given by

rj + con(Zj) (34)

where

Zj = {zj
1, . . . , z

j
n | zj

i =

{
yi if ψj

i = αi

wi = −yi if ψj
i = βi

} (35)

Corollary 1 Let {r2j−1, r2j} (r2j−1, r2j ∈ E) be any pair of opposite extreme
points of H. Then

H = (r2j−1 + con(Z2j−1)) ∩ (r2j + con(Z2j)) �

So assuming the decomposition plan will work, in which we hope to infer the
metric projection onto H from the metric projections onto its components, the
problem we are facing next is calculating the metric projection onto a translated
convex cone. This is taken up in the next section.

3 Explicit Calculation of the Metric Projection

onto a Translated Convex Cone

We start with the following sharpening of theorem 4 for convex cones. For ease
of presentation, and as we will substantiate at the end of this section, without
loss of generality, we present or results mainly - with a few exceptions - for
r1 + con(Z1) = ymin + con(Y).

Proposition 5 Denote (con(Y) + ymin) by K1 and let y0 ∈ K1. Then

y0 = PK1(x) ⇔ 〈x− y0, y〉 ≤ 0 ∀ y ∈ con(Y) & 〈x− y0, y0 − ymin〉 = 0
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Proof: y0 = PK1(x) ⇔ (x − y0) ∈ (K1 − y0)0 ⇔ 〈x − y0, y − (y0 − ymin)〉 ≤
0 ∀ y ∈ con(Y). The non-positivity condition on the inner product holds for all
y ∈ con(Y), and so in particular for the following two choices:

y = 0 ⇒ 〈x− y0, y0 − ymin〉 ≥ 0
y = 2(y0 − ymin) ⇒ 〈x− y0, y0 − ymin〉 ≤ 0 �

The proof given here is a straightforward adaptation to the proof for the ’un-
translated’ case which may be found in [6] and in [8].
There is a useful corollary to proposition 5. Before stating this result, we have
to introduce the following sets:

Definition 10 The translated polar cone of con(Zj) + rj (cf. definition 9),
denoted by (con(Zj) + rj)0, is the following convex set:

(con(Zj) + rj)0 = {c ∈ X | 〈(c − rj), z〉 ≤ 0 ∀ z ∈ con(Zj) } (36)

The usefulness of the translated polar cones will become clear when we view
them in perspective with respect to the dual cones of con(Zj) + rj, and of H at
the end of this section. For now we restrict ourselves to a corollary to proposition
5 where they play a major role.

Corollary 2 Let Kj = con(Zj) + rj and let x ∈ Kj
0, then PKj (x) = rj.

Proof: It is sufficient to restrict ourselves to the case j = 1. We note that, by
substituting ymin for y0 in proposition 5 both conditions are satisfied. �

For the situation where x /∈ (con((Y )+ymin)0, we have, according to proposition
5, reduced the problem of finding the metric projection of x onto con(Y)+ymin

to checking the non-positivity of the inner product between x− y0 and all ele-
ments of con(Y), and the orthogonality between x− y0 and y0 − ymin. For this
to be possible at all, we need a representation of all elements involved in terms
of, or in any case related to, the elements yi of Y. But what has x ∈ X got
to do with Y. The following result, the proof of which may again be found in
F. Deutsch [6] gives a very nice way out of this dilemma:

Theorem 5 The Reduction Principle

PK1(PS(x)) = PK1(x) = PS(PK1(x)) �

The first equality in Theorem 5 is of importance for us: we establish the metric
projection of x onto S first - there is only one, since by Theorem 3 S is Chebyshev
- and subsequently use PS(x) instead of x in Proposition 5.
To find the best approximation to x from S, we introduce the following set: Let

B = { bi ∈ X | i = 1, . . . , n } (37)
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be an orthonormal basis for S, i.e. S = span(Y) = span(B), and 〈bi, bj〉 =
1 if i = j and 〈bi, bj〉 = 0 otherwise. In particular B can be constructed
from Y through the Gram-Schmidt orthogonalization process - see e.g. [6]. The
best approximation to x from S is simply the Fourier series expansion of PS(x)
relative to B:

PS(x) := s =
n∑

i=1

〈bi, x〉bi (38)

But to apply proposition 5 we would like to have PS(x) directly in terms of
the elements yi of Y. This turns out to be an aspect that turns up quite
frequently: we commute in S between the orthonormal basis B in which we
can calculate easily using the Fourier-coefficients as coordinates, and the ‘given’
basis Y in which we can interpret our results using the barycentric coefficients
as coordinates. Writing the expansion of PS(x) with respect to the basis Y as

PS(x) =
n∑

i=1

δiyi ( δi ∈ R ) (39)

what we are looking for is the relation between {δ1, . . . , δn} and
{〈b1, x〉, . . . , 〈bn, x〉}. This question is addressed by P. Halmos [7] and we follow
his development:
Consider the linear transformation T : S → S defined by Tyi = bi. The ma-
trix of this transformation with respect to the basis Y is denoted by (tij), i.e.
bj = Tyj =

∑n
i=1 tijyi - concerning this notation that is not conform the ‘usual’

matrix-vector notation in Rn, we cite Paul Halmos [7] that this fact is“a per-
versity not of the author, but of nature”. It follows that:

(tij) = G−1(y1, y2, . . . , yn)(uij) (40)
(uij) = (〈yi, bj〉)

where G(y1, y2, . . . , yn) is the Gram matrix defined in equation (15). Recall that
G(y1, y2, . . . , yn) - [6] - and (tij) - [7] - are invertible, and so a fortoriori (uij)
is invertible. The relation between the sets of coordinates of s in respectively
equation (39) and (38) follows from a direct computation:

δi =
n∑

j=1

tij〈bj, x〉 (41)

Note that equation (41) is equivalent to solving the normal equations in the δi
- see equation (14):

n∑

i=1

δi〈yi, yj〉 = 〈s, yj〉 (j = 1, . . . , n)
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Likewise using the inverse transformation V : S → S defined by yj = Vbj and
with the matrix of this transformation with respect to B denoted by (vij), i.e.
yj = Vbj =

∑n
i=1 vijbi where

(vij) = (uij) t (42)

where the superscript t denotes transposition, and so the Fourier coefficients of
s in equation (38) as function of the barycentric coefficients in equation (39) is
given by

〈bi, x〉 =
n∑

j=1

vijδj (43)

Note that

(uij)(vij) = G(y1, y2, . . . , yn)

Let us now return to proposition 5. In view of equations (32) we assume that
s /∈ H:

s /∈ H ⇔ δ /∈ Γ (44)

Moreover, in view of corollary 2 we assume that s /∈ (con(Y) + ymin)0, and
s /∈ (con(W) + ymax)0; we present the conditions for this being the case at the
end of this section.
We concentrate first on the orthogonality condition in proposition 5. The ele-
ments involved in this condition have the following representations with respect
to the basis Y of S:

y0 := ymin + y =
n∑

i=1

(αi + ρ0i)yi (45)

s− y0 =
n∑

i=1

(δi − ρ0i − αi)yi :=
n∑

i=1

φiyi

y0 − ymin =
n∑

i=1

ρ0iyi

Using the base transformation V : S → S we have the following equivalent
representations for s− y0 and y0 − ymin with respect to the basis B of S:

s − y0 =
n∑

i=1

〈bi, s− y0〉bi ( 〈bi, s− y0〉 =
n∑

j=1

vijφj ) (46)

y0 − ymin =
n∑

i=1

〈bi, y0 − ymin〉bi ( 〈bi, y0 − ymin〉 =
n∑

j=1

vijρ0j )
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s−y0 and y0−ymin are orthogonal to each other if s−y0 is in the subspace of S
that is the orthogonal complement of the subspace of S of which y0 −ymin is an
element. In other words, the Fourier-coefficients of the representation of s − y0
with respect to B that may be non-zero, must be zero in the representation of
y0 − ymin with respect to B, and the other way around.
To see how this works out let us take a ‘candidate solution element’ yc from
con(Y) + ymin with representation

yc =
n∑

i=1

ρciyi + ymin (47)

and to be specific let us assume that yc−ymin ∈ span{{b1, . . . , bm}} & s−yc ∈
span{{bm+1, . . . , bn}} or equivalently yc − ymin /∈ span{{bm+1, . . . , bn}} &
s− yc /∈ span{{b1, . . . , bm}}, and, using equations (45) and (46) with yc substi-
tuted for y0 this is in turn equivalent to the following system of linear equations
in the unknown barycentric coefficients ρc = (ρci) of yc:

(vij)ρc =




〈b1, s− ymin〉
· · ·
· · ·

〈bm, s − ymin〉
0
·
0




(48)

where the n × n matrix (vij) is defined in equation (42). Hence there is a
unique solution ρc - recall that (vij), being the matrix of the base transformation
V : S → S, is non-singular. Indeed,

ρc = (tij)




〈b1, s− ymin〉
· · ·
· · ·

〈bm, s− ymin〉
0
·
0




(49)

with (tij) given in equation (40). Of course we must check that yc really is in
con(Y) + ymin:

yc ∈ con(Y) + ymin ⇔ ρc ≥ 0 (50)

We note that inequalities for vectors are to be understood component wise.
Suppose yc is in con(Y) + ymin; our candidate solution must pass subsequently
the non-positivity test from proposition 5 to qualify itself finally as a solution:
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〈s − yc, y〉 ≤ 0 ∀ y ∈ con(Y) ⇔ (51)
〈s − yc, yi〉 ≤ 0 ∀ i ∈ {1, . . . , n} ⇔
G(y1, . . . , yn)(δ − ρc − α) ≤ 0

We would like to add here that the test (50) is redundant in the sense that a
candidate solution satisfying the orthogonality condition of proposition 5 that
passes the test (51) is an element of con(Y) + ymin. The point is that we need
ρc anyway for the test (51), and so if a candidate solution satisfying the orthog-
onality condition does not pass the test (50), we do not have to bother about
the test (51), and instead immediately try a next candidate solution.

And so finally, realizing that there are
∑n−1

i=1

(
n
i

)
= 2n − 2 ways, with

(·
·
)

the
binomial coefficient, in which we can split S into orthogonal complements, we
can state our main result about the explicit calculation of the metric projec-
tion onto con(Y) + ymin. However, before doing so, we need to introduce the
following finite subset of Rn:

Ξ =

∑n−1
i=1 (n

i) elements
︷ ︸︸ ︷






〈b1, s− ymin〉
· · ·
· · ·

〈bn−1, s− ymin〉
0




, . . . ,




0
·
·
0

〈bn, s− ymin〉








(52)

where the vectors of this set are composed from all possible choices of elements
from the two Rn vectors (〈s − ymin, bi〉) and 0 with at least one element from
each.

Theorem 6 Suppose PS(x) /∈ H & PS(x) /∈ (con(Y) + ymin)0. There exists a
unique element ξ0 ∈ Ξ such that

Pcon(Y)+ymin
(x) =

n∑

i=1

ρ0iyi + ymin

where ρ0 ( = (ρ0i )) is given by

ρ0 = (tij)ξ0

with (tij) the matrix of the base transformation T : S → S given in equation
(40). In particular the best approximation to x ∈ X from con(Y)+ymin is found
in at most (2n − 2) steps.

Proof: In view of our detailed analysis presented in this section, we can restrict
ourselves to the claim that the result is obtained in at most (2n − 2) steps: the
existence and uniqueness of the solution is guaranteed by the second part of
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proposition 3, so as soon as we have found a ‘candidate solution’ yc by picking
an arbitrary element from the set Ξ that passes the tests (50) and (51) we can
stop. �
Assuming that the inner products can be calculated relatively easily, the differ-
ent ‘steps’ are very straightforward and not at all computationally intensive.

Clearly the results of this section hold, mutadis mutandis, for the other trans-
lated convex cones rj + con(Zj) (j = 2, . . . , 2n). So in particular they hold
for the translated convex cone associated with the opposite extreme point of
ymin, con(W) + ymax = ymax − con(Y) which, according to proposition 4 and
corollary 1, gives together with ymin + con(Y) a decomposition of H. In fact,
representing the candidate solution for the metric projection onto ymax+con(W)
by

yc = ymax +
n∑

i=1

ρciwi =
n∑

i=1

(βiyi + ρciwi) =
n∑

i=1

(βi − ρci)yi (53)

the most important changes are that equations (49), (50), and (51) should be
replaced by, respectively

ρc = −(tij)




〈b1, s− ymax〉
· · ·
· · ·

〈bm, s− ymax〉
0
·
0




(54)

yc ∈ ymax − con(Y) ⇔ ρc ≥ 0 (55)

〈s − yc, w〉 ≤ 0 ∀w ∈ con(W) ⇔ G(y1, . . . , yn)(β − ρc − δ) ≤ 0 (56)

Before closing this section, we come back to the translated polar cones intro-
duced in definition 10. First of all we note in view of the Reduction Principle
(theorem 5) the only relevant part of these dual - and translated polar cones
is their intersection with S. For that reason they are to be understood as a
subsets of S, leaving their notation unchanged. In view of proposition 4 and
corollary 1, we always have H0 ⊃ (con(Z2j−1) + r2j−1)0 + (con(Z2j) + r2j)0 -
see F.Deutsch [6]. The following theorem collects a number of relations for the
dual - and translated polar cones. In particular we present a description of H0

in terms of its metric projection onto H using the translated polar cones. Before
stating the theorem, we need to introduce some additional objects related to
the extreme points.
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Definition 11 Let rj ∈ E - cf. (33) - with barycentric coefficients {ψj
1, . . . , ψ

j
n}.

rk ∈ E is an adjacent extreme point of rj if

{
ψk

i 6= ψj
i for exactly one i ∈ {1, . . . , n}

ψk
i = ψj

i for all other i ∈ {1, . . . , n}

The collection of n adjacent extreme points of rj ∈ E is denoted by Erj .

The extremal subset of H associated with rj ∈ E and one of its adjacent ex-
treme points rji ∈ Erj is given by

Erji

rj = {h ∈ H | h = λrj + (1 − λ)rji , 0 ≤ λ ≤ 1 }

Theorem 7 Let j ∈ {1, . . . , 2n}.

(1)
(rj + con(Zj))0 = (rj + con(Zj))0 ⇔ rj = 0

(2)
(rj + con(Zj))0 6= ∅

(3) Let Nε be any ε-environment of 0 ∈ S. Then

Nε ⊂ H ⇒ H0 = ∅ ⇒ (rj + con(Zj))0 = ∅

(4)
Nε ⊂ (rj + con(Zj)) ⇒ (rj + con(Zj))0 = ∅

(5) Assume Nε 6⊂ H, and let rk ∈ E be such that
∥∥rk

∥∥ <
∥∥rj

∥∥ ∀ rj ∈ E ,
(j 6= k). Consider the set

D = H0 \ (
n⋃

i=1

((rki + con(Zki))0 | rki ∈ Erk) ∪ (rk + con(Zk))0)

s ∈ D ⇒ PH(s) ∈ (Er
ki1

rk + · · ·+ Er
kin−1

rk ) \ ((
n−1⋃

l=1

{rkil}) ∪ {rk})

where rkil ∈ Erk (l = 1, . . . , n− 1) is one of the n possible choices of
(n− 1) adjacent extreme points of rk

(6)

s ∈ H0 \ D ⇒ PH(s)

{
= rk if s ∈ (rk + con(Zk))0
∈ Erk otherwise

Proof:

(5) The set D is disconnected - see J. Lee [9] - with convex components. If s is
in one of these components it follows from our construction that the point
of H closest to s is an element of the sum of extremal subsets of H, but
without the extreme points, it faces.
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(6) This follows from corollary 2. �

Let us see what we have got thus far. We have seen in corollary 2 that for
s ∈ (con(Zj) + rj)0 (j ∈ {1, . . . , 2n}), where

s ∈ (con(Zj) + rj)0 ⇔ F(y1, . . . , yn, z
j
1, . . . , z

j
n)(δ − ψj) ≤ 0 (57)

(F(y1, . . . , yn, z
j
1, . . . , z

j
n))i,k = 〈yi, z

j
k〉 (i , k = 1, . . . , n)

the metric projection of s onto the translated cones is straightforward. Theorem
7 presents results for finding PH(s) with s ∈ H0, where

s ∈ H0 ⇔ G(y1, . . . , yn)δ ≤ −〈s, ymin〉 (58)

But establishing that the metric projection onto H is an element of a sum of
extremal sets of H is not nearly good enough when the goal is to compute this
metric projection. And on top of that, what to do when
s ∈ S \ ((

⋃2n

j=1(r
j + con(Zj))0) ∪ H); this situation is not covered at all at

this stage. In other words, it is high time we concentrate on the next step
in our program, viz. inferring the metric projection onto H from the metric
projections onto the members of its decomposition. This is addressed in the
next, final section.

4 The Boyle - Dykstra Theorem

The Boyle-Dykstra theorem establishes the convergence of an iterative pro-
cedure that computes best approximations from an intersection ∩n

i=1Ci of a
finite number of closed convex subsets Ci of a Hilbert space from the best
approximations of the individual sets Ci. - A comprehensive treatment of
this theorem can be found in the recent book of F. Deutsch [6]. This is
exactly our situation, because thanks to the Reduction Principle theorem 5,
proposition 4, and corollary 1 we are looking for the best approximation from
(con(Z2j−1) + r2j−1) ∩ (con(Z2j) + r2j) (j ∈ {1, . . . , 2n−1}) to PS(x), and ac-
cording to proposition 3 the translated cones are closed, convex subsets of the
Hilbert (sub-)space S.
Now write

Kj = con(Zj) + rj

and let, for n ∈ N, [n] denote ‘n modulo 2’, i.e.

[n] := {1, 2}∩ {n− 2k | k = 0, 1, 2, . . .}

Without loss of generality we present the Boyle-Dykstra theorem for the trans-
lated cones K1 and K2 associated with the pair of opposite extreme points ymin

and ymax see definitions 8 and 9, and corollary 1.
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Theorem 8 The Boyle-Dykstra theorem

Let PS(x) be the best approximation to x ∈ X from S, and let PS(x) /∈ H.
Construct the following sequence {xn} in S :

x0 = PS(x), e−1 = e0 = 0,
xn = PK[n](xn−1 + en−2), (using theorem 6)
en = xn−1 + en−2 − xn (n = 1, 2, . . .)

This sequence converges to the best approximation from H in the following
way:

lim
n→∞

‖xn −PH(x)‖ = 0

with ‖·‖ the norm on X �

For a proof of the Boyle-Dykstra theorem we refer to the excellent recent book
of F. Deutsch [6], in which also references to different applications of this theo-
rem may be found.

We are now ready to present our final result.

Theorem 9 Let PS(x) be the best approximation to x ∈ X from S. Then the
best approximation to x from H, PH(x), is given by one of the three following
cases:

(1) If PS(x) ∈ H (cf. (44)), then PH(x) = PS(x)

(2) If PS(x) ∈ Kj
0 (j ∈ {1, . . . , 2n}) (cf. (57)), then PH(x) = rj

(3) If PS(x) ∈ S\ ((
⋃2n

j=1 Kj
0)∪H), then PH(x) = PKj (PS(x)) where rj is such

that
∥∥PS(x) − rj

∥∥ ≤
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E , (ri 6= rj)

Proof:

(1) See equation (32).

(2) PS(x) ∈ Kj
0 ⇒ PKj (PS(x)) = rj. Without loss of generality we may

assume that j is odd, i.e. j = 2k − 1 for some k ∈ {1, . . . , 2n−1}. But
rj = r2k−1 ∈ K2k, and H = K2k−1 ∩ K2k. The result now follows from
the Boyle-Dykstra theorem, because the sequence {xn} constructed in the
theorem converges immediately to the constant sequence {rj}.

(3) PS(x) is in one of the components of the disconnected set S\((
⋃2n

j=1 Kj
0)∪H).

In fact it follows from our construction that PS(x) is in the component that
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looks out at the subset (Er
ji1

rj + · · ·+Er
jin−1

rj )\ ((∪n−1
l=1 {rjil})∪{rj}) of Kj ,

where rj is such that
∥∥PS(x) − rj

∥∥ ≤
∥∥PS(x) − ri

∥∥ ∀ ri ∈ E , (ri 6= rj)
and rjil ∈ Erj (l = 1, . . . , n− 1) is one of the n possible choices of (n− 1)
adjacent extreme points of rj . Without loss of generality we may again
assume that j is odd, i.e. j = 2k − 1 for some k ∈ {1, . . . , 2(n−1)}.
Using theorem 6 we compute PK2k−1(PS(x)) ∈ (Er

ji1

rj + · · · + Er
jin−1

rj ) \
((∪n−1

l=1 {rjil}) ∪ {rj}) ⊂ K2k−1. But PK2k−1(PS(x)) ∈ K2k. The result
follows again from the Boyle-Dykstra theorem. �

Note that theorem 9 and theorem 7 combined gives a complete description of
H0 in terms of its metric projection onto H.
In [10] the results of this paper are applied to an important problem in oil in-
dustry.
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