Mathematical Developments in Oil – and Gas Exploration and Production

by

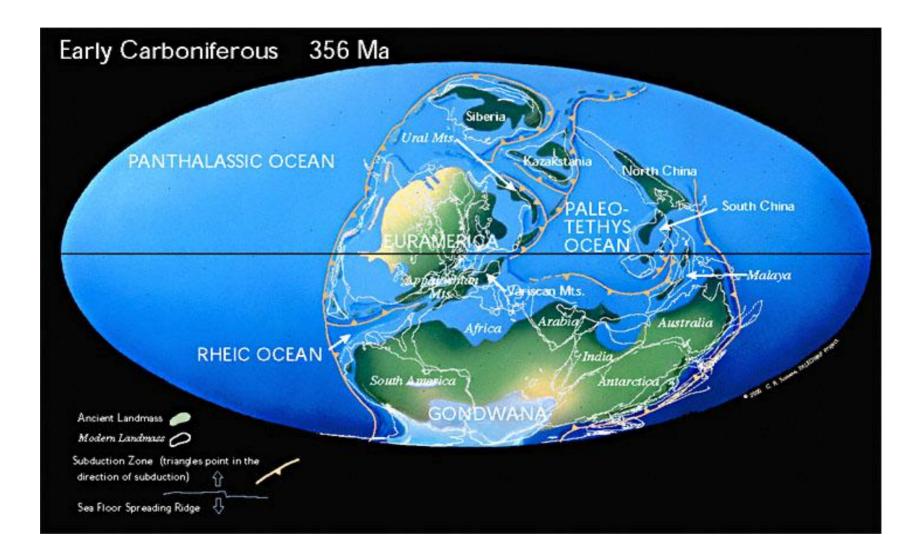
Hennie Poulisse

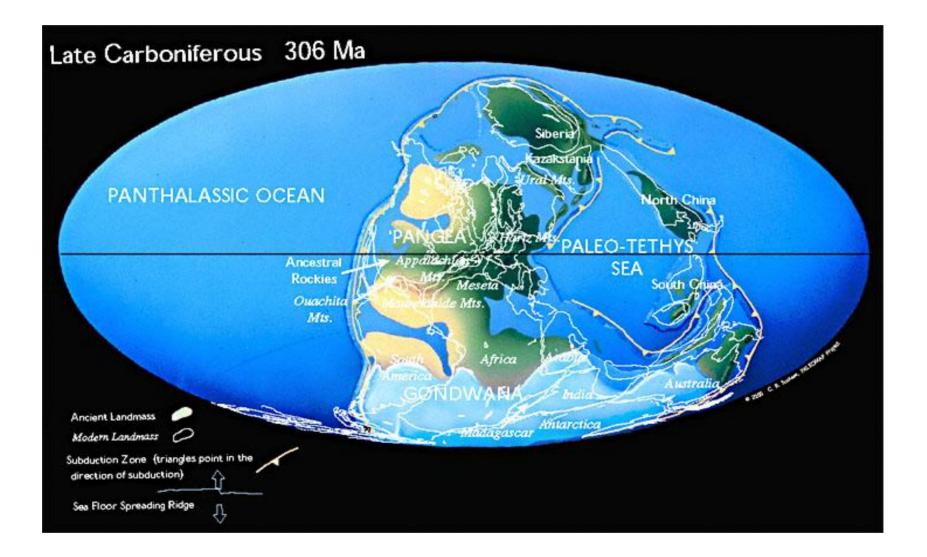
- 1. Introduction
- 2. Exploration
- 3. Production
- 4. Production Operations
- 5. A First Paradigm Shift
- 6. A Second Paradigm Shift
- 7. Algebraic Encounters of the First Kind
- 8. The CoCOil Research Programme

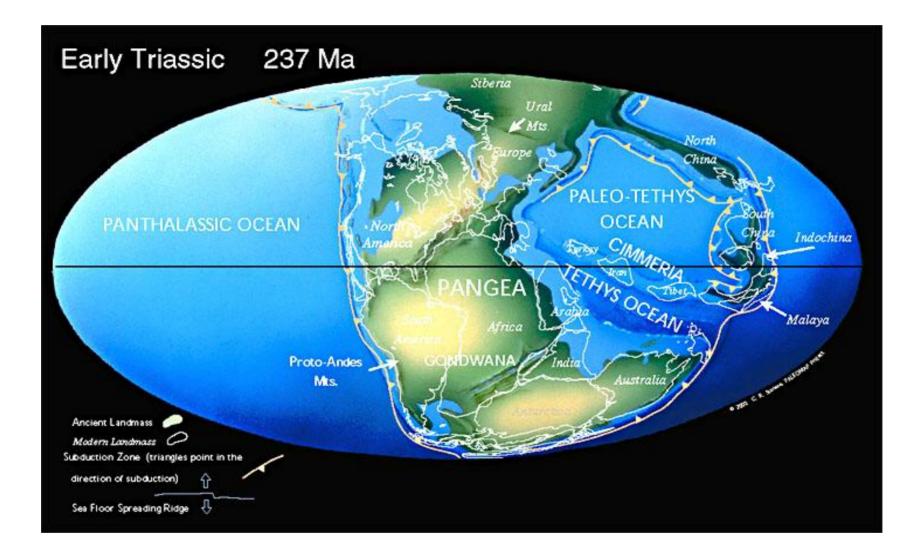
A Mathematician's Apology Shifting Continents

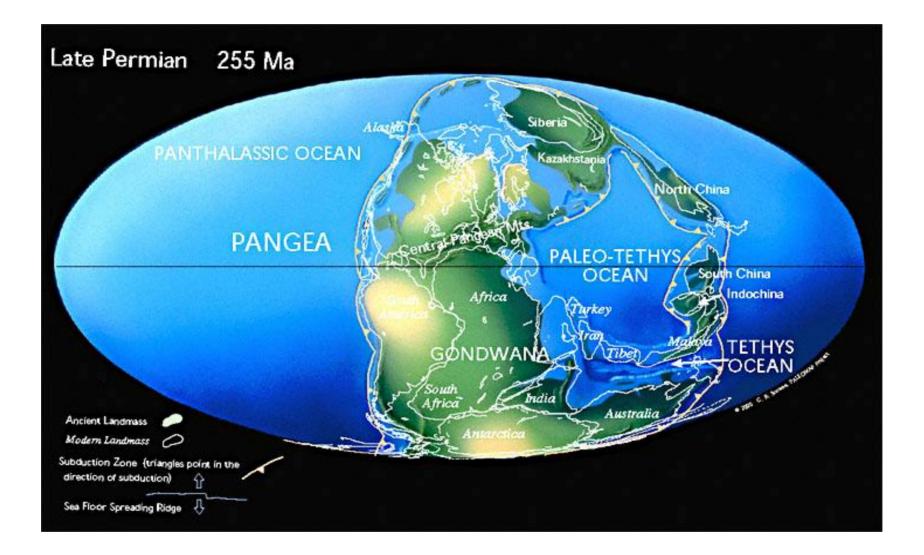
> *'Difficult Mission' Site-seeing Tour*

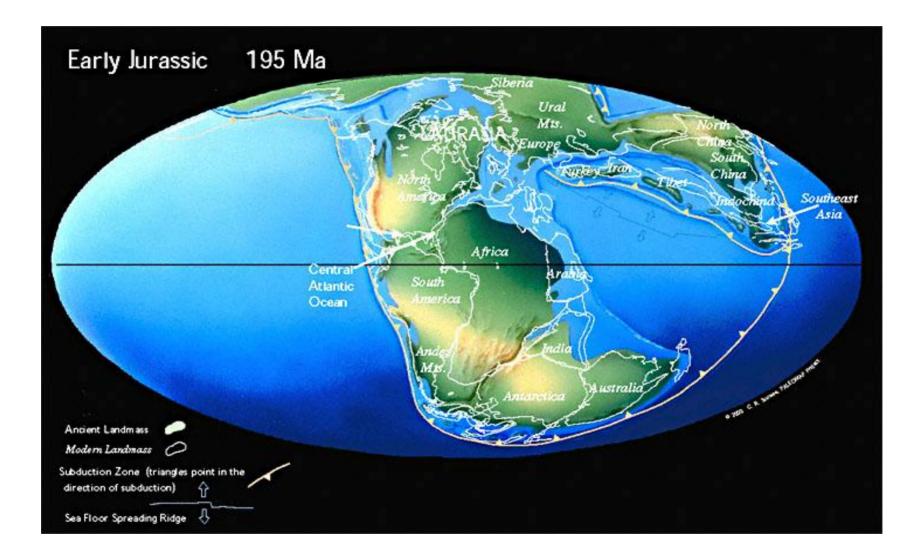
Huge Time Scale

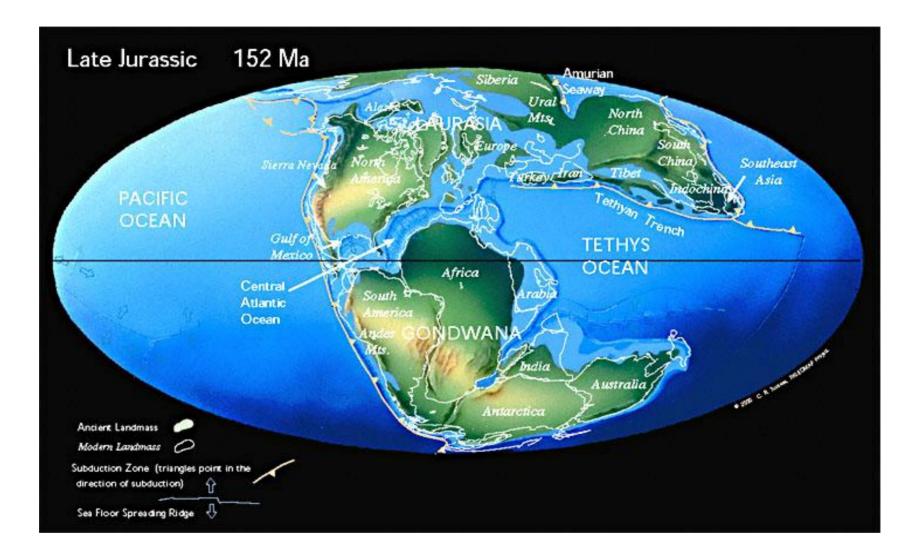


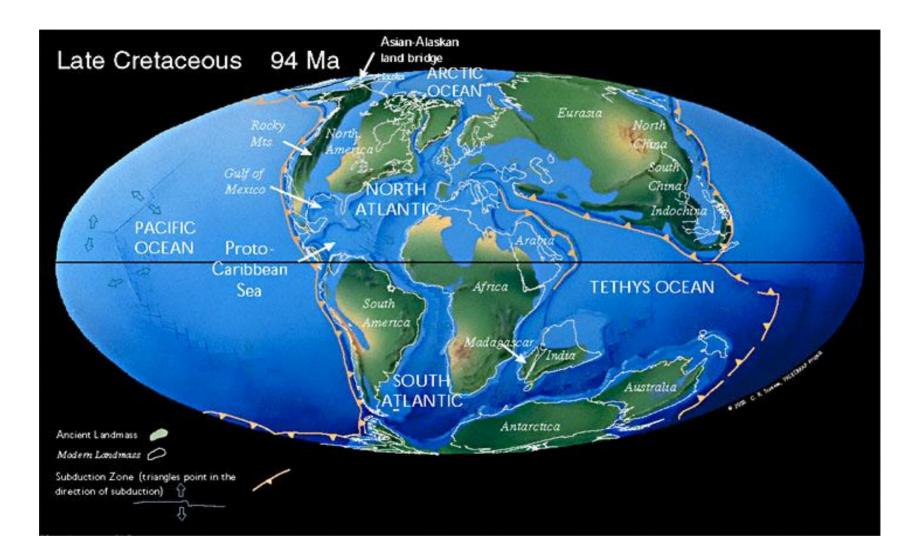


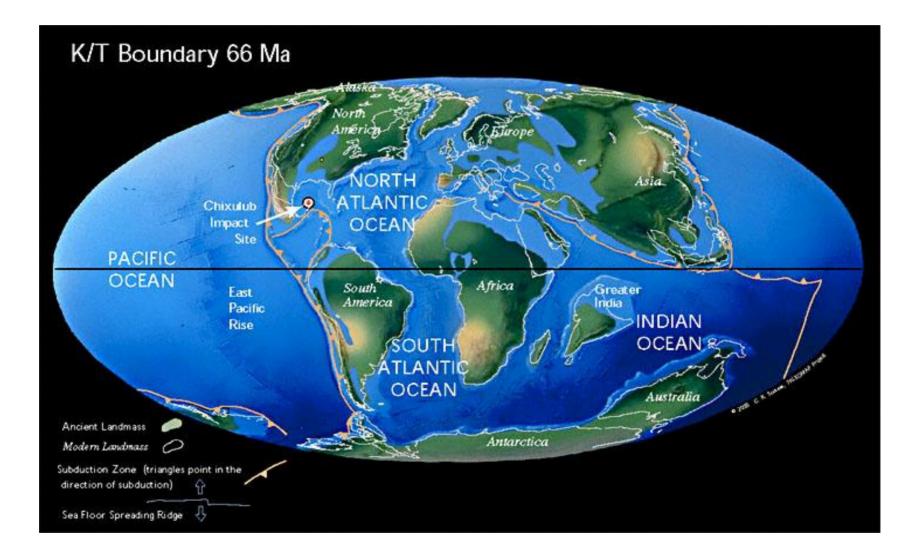


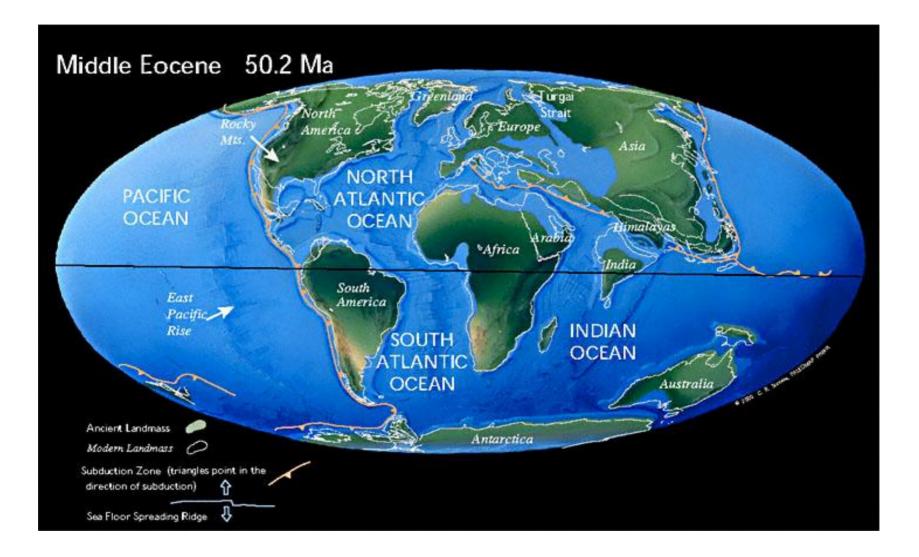


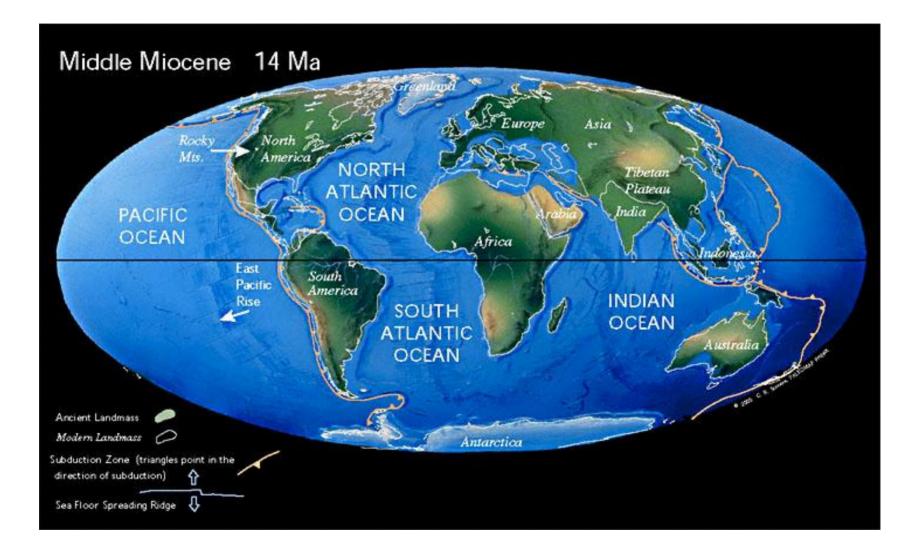


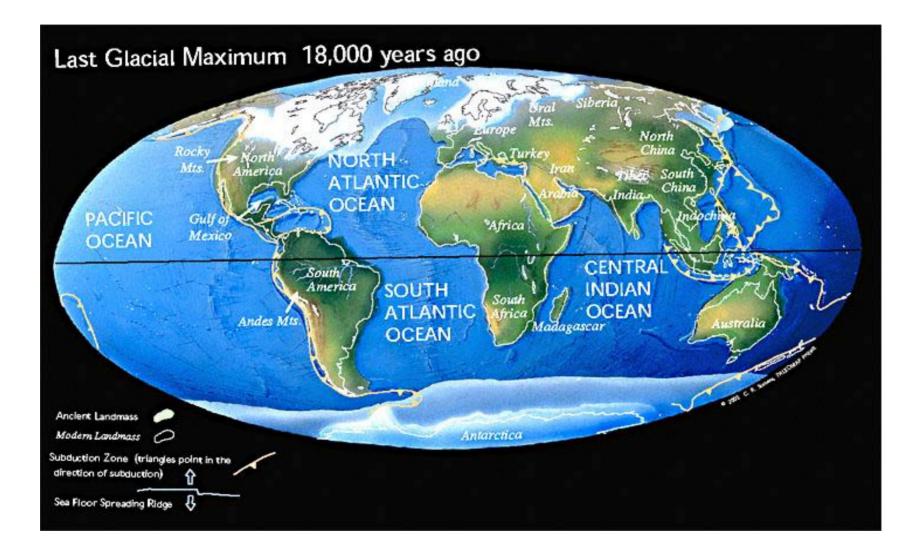


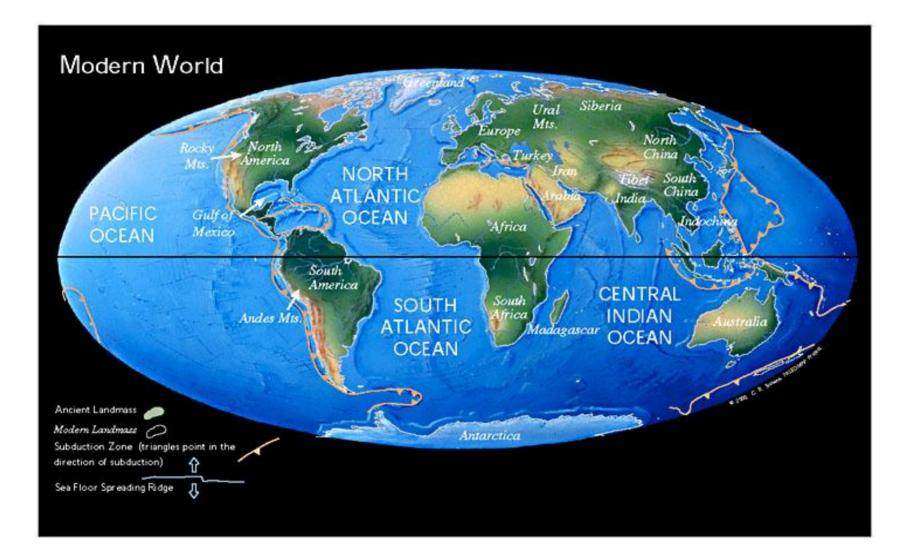








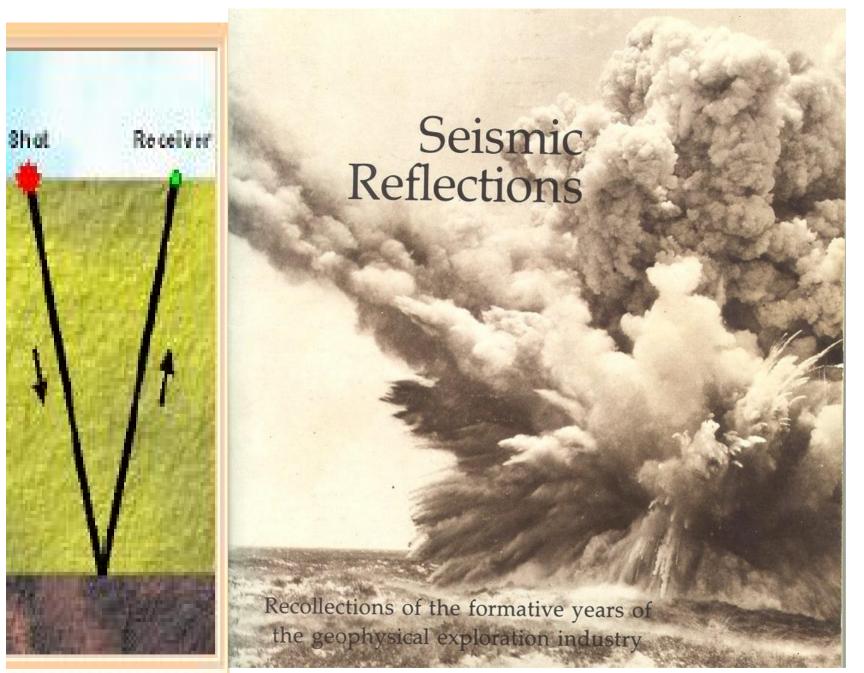




.

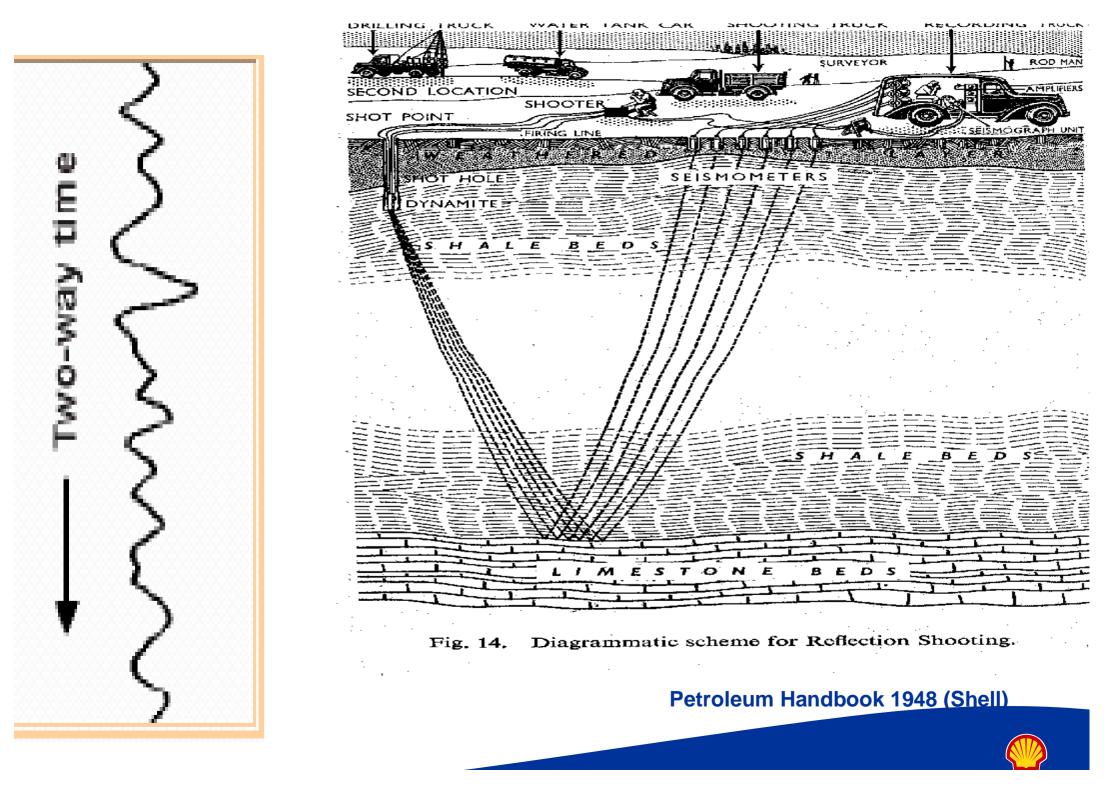
Basic Seismic The Wave Equation Seismic Exploration

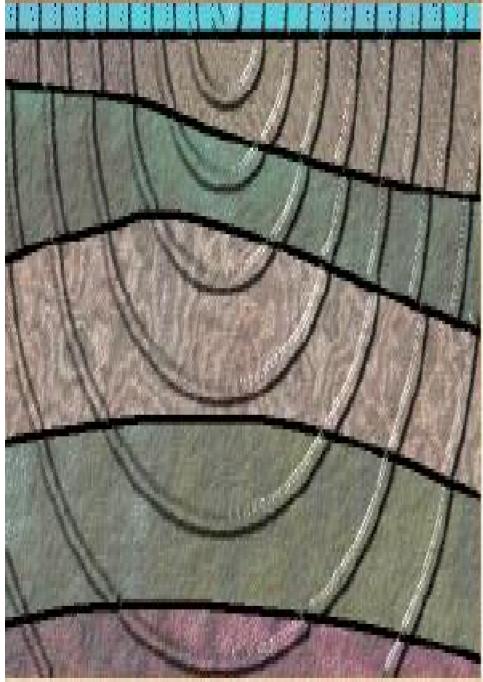
Geophysics

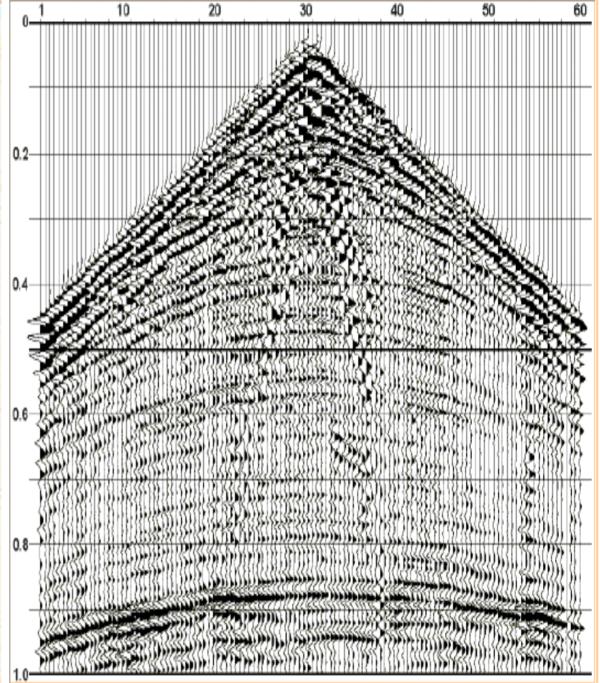


A refraction shot in West Texas. 2,000 pounds of dynamite shot by Humble Oil & Refining Company (now Exxon), 1930.

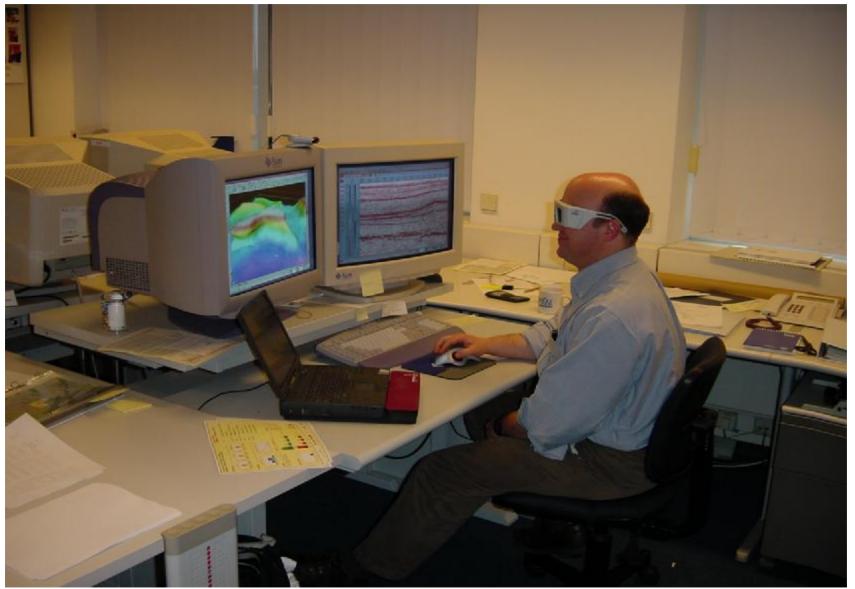
Modern technology



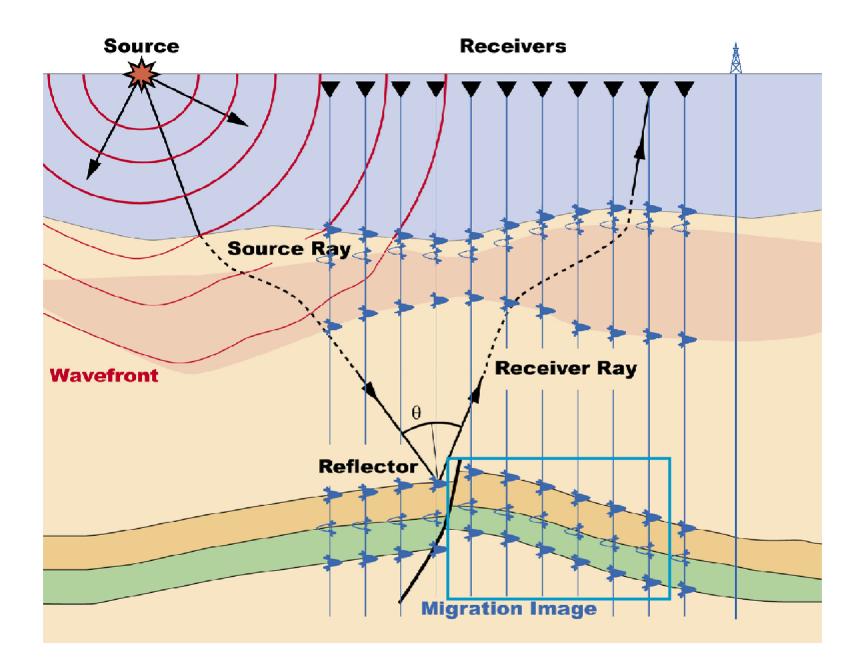




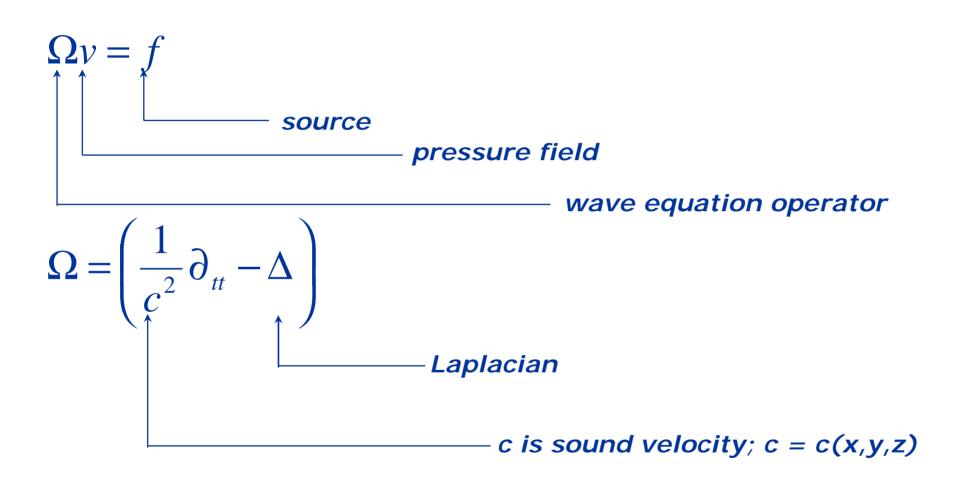
The Interpreter at work



(Jaap van der Toorn, NAM TGS-S)



wave equation



specification c for different layers is velocity model m $\Omega=\Omega(m)$

Inversion Find the best model *m* that explains the data

$$\min_{m} J(m) \quad \text{with}$$

$$J(m) = \sum_{l} (v_{l}(m) - v_{l}^{\text{obs}})^{2}$$

$$s.t., \Omega(m)v = f$$

General approach too difficult, J has local minima

Migration: an initial model, m_0 , is assumed known

A large number of approaches for the Migration problem

Here just one example

wave equation

Helmholtz equation

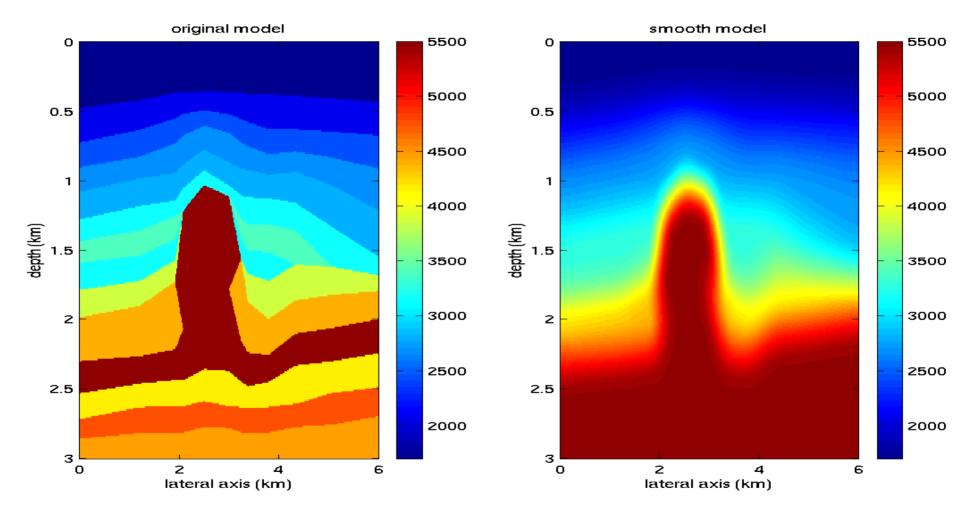
$$\left(\frac{1}{c^2}\partial_{tt} - \Delta\right) v = f \quad \xrightarrow{\text{Fourier in time}} \quad -\left(\frac{w^2}{c^2} + \Delta\right) \hat{v} = \hat{f}$$

Discretize: A v = F

A = L USolution:

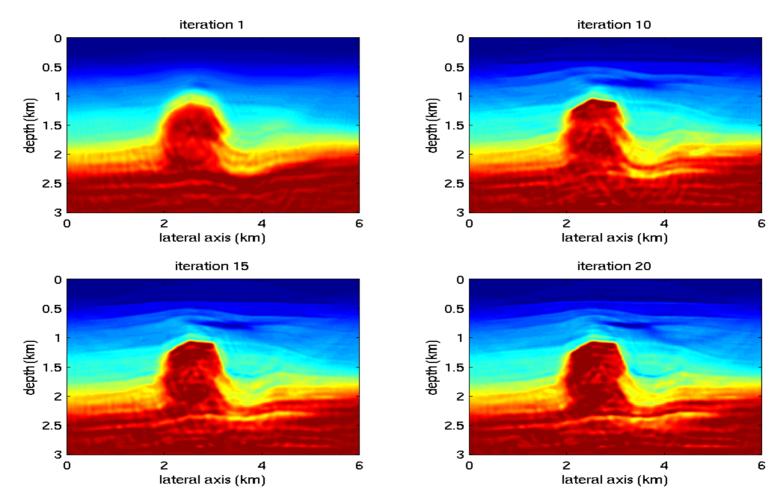
L is lower triangular, U is upper triangular back substitution: $v = U^{-1}L^{-1}F$

2D example



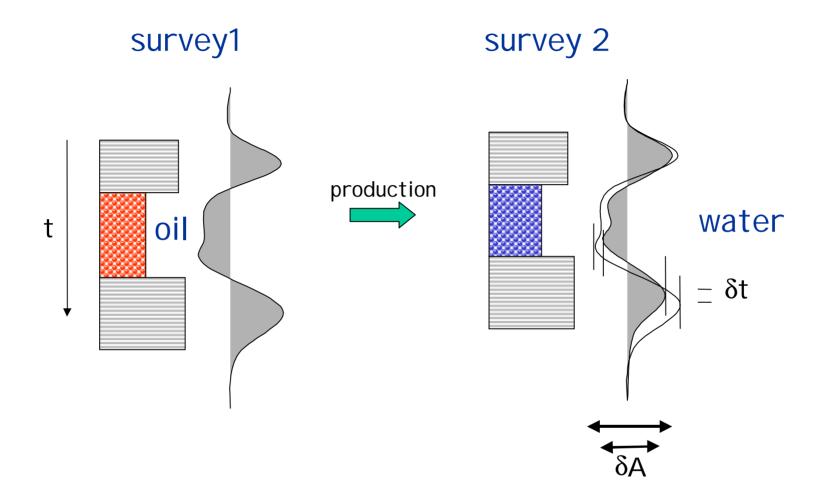
Original and smoothed model used for migration

2D example

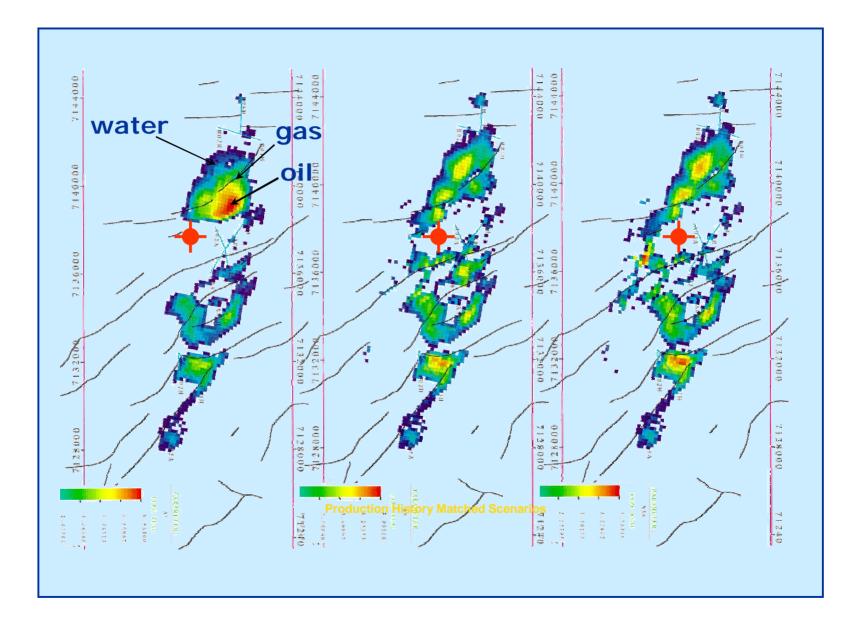


Iterative migration on smoothed model (1,10,15, and 20 iterations)

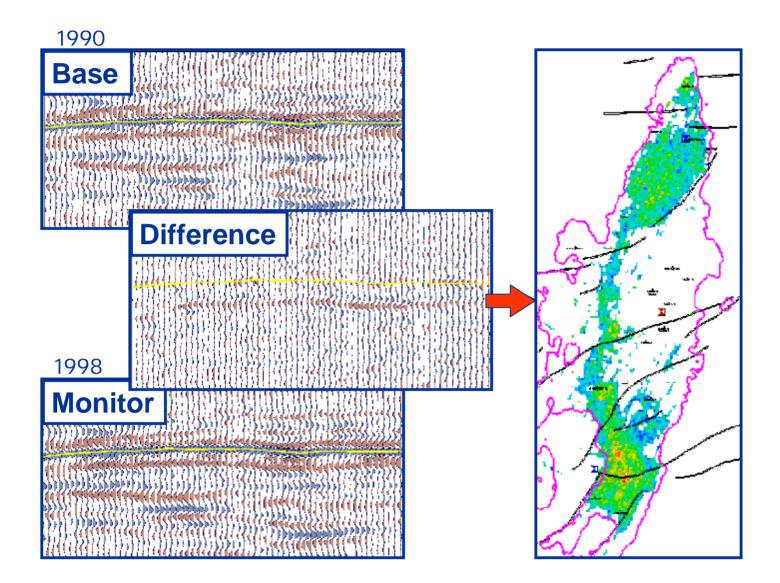
The Geophysics of seismic 4D



4D seismic amplitude and timing changes with production



Time-lapse Seismic



Dynamic model updating using 4D

updated Inputs flow model - 4D seismic eismic 714000 - pre 4D model results Production History Matched Seenarios

- 1. Introduction
- 2. Exploration
- 3. Production

Reservoir Engineering Darcy's Law

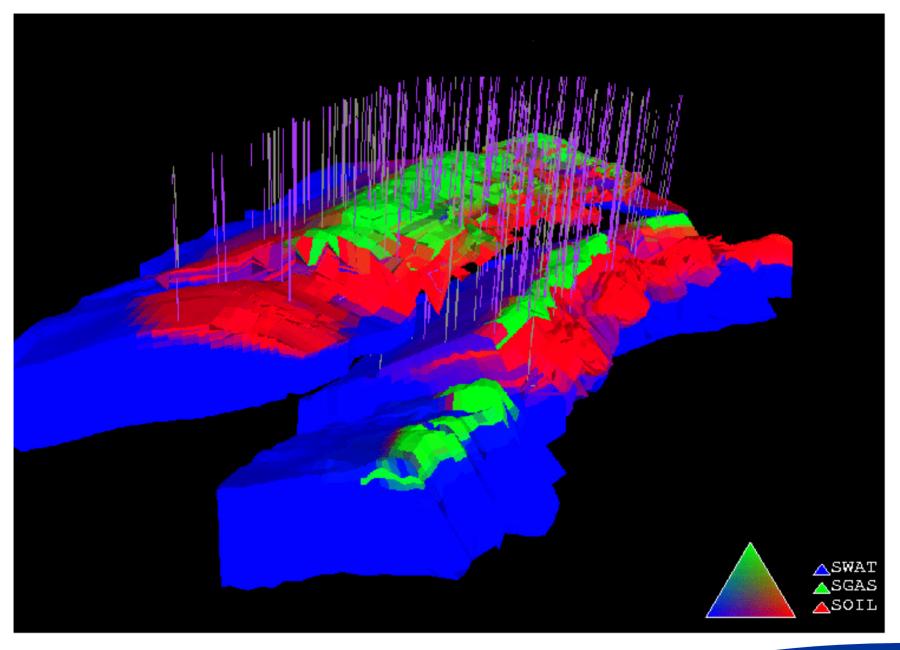
Flow Through Porous Media

What is Reservoir Engineering?

How to recover the maximum amount of oil (and/or gas) from a reservoir

- I Oil and gas under high pressure in sub-surface reservoirs
- I Inside porous rock (e.g. sand stone) below a sealing cap rock
- I Does more wells mean more oil?
 - n Pressure drops below reservoir pressure, oil flow stops
 - n Improve recovery by water injection (or gas): pump up the pressure
 - n Or more advanced methods: steam injection, surfactants
- Where to drill these wells and how and when
 - n vertical wells, deviated or horizontal wells
 - n multi-laterals (more expensive)
- Reservoir engineers design a "Field development plan"

The Brent oil field in the North See



To optimize oil and gas recovery computer simulations are used

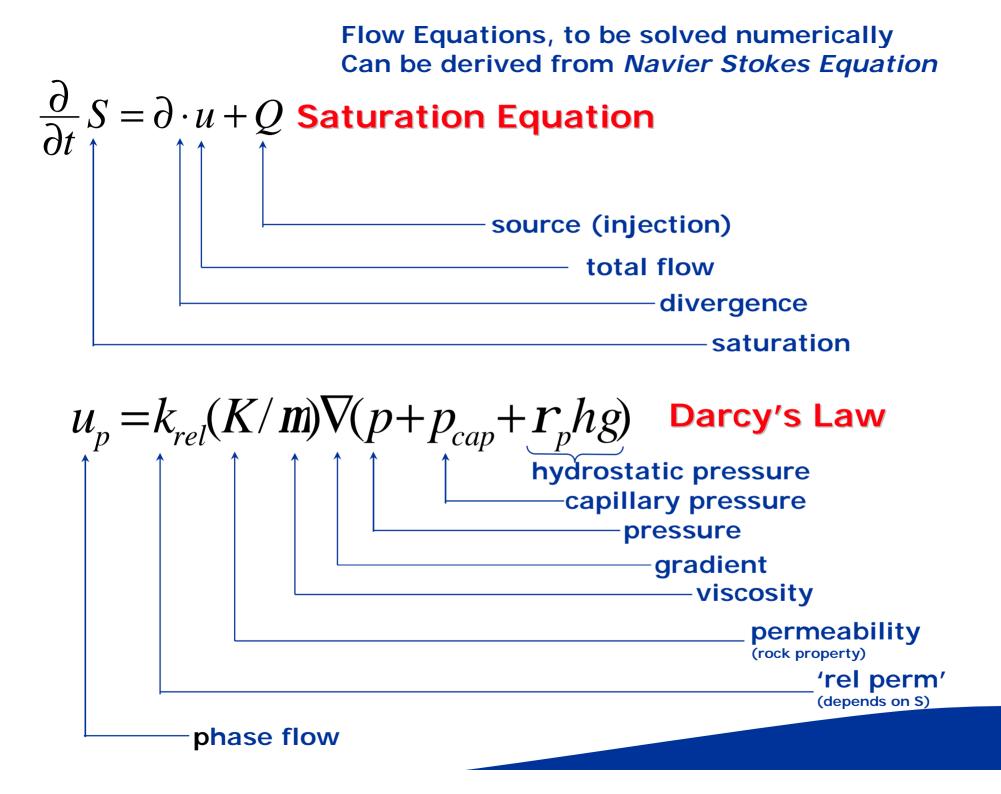
- **Capture reservoir structure and geometry in a discrete model**
- Compute how oil and gas flows through the reservoir rock

Depends on

- u initial state (pressure, which fluids etc.)
- u wells
- u Fluid properties(oil viscosity), rock properties (porosity, permeability)

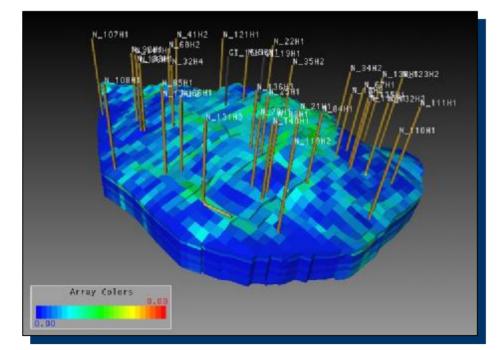
Fast method to solve the flow equations is necessary

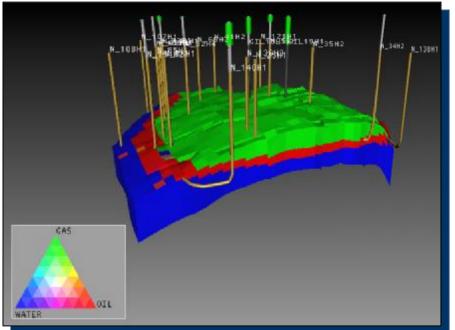
- Simulate the history of a reservoir over 20-50 years
- Huge models with 100,000 to 1,000,000 grid cels

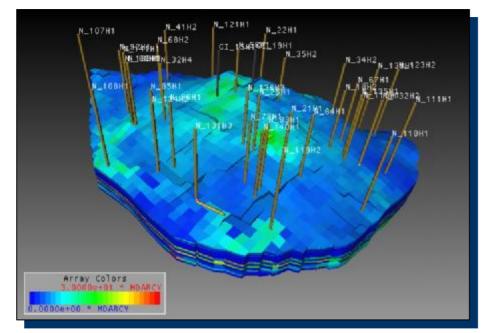


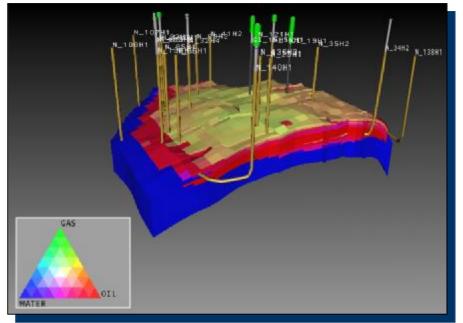
Finite volume discretization

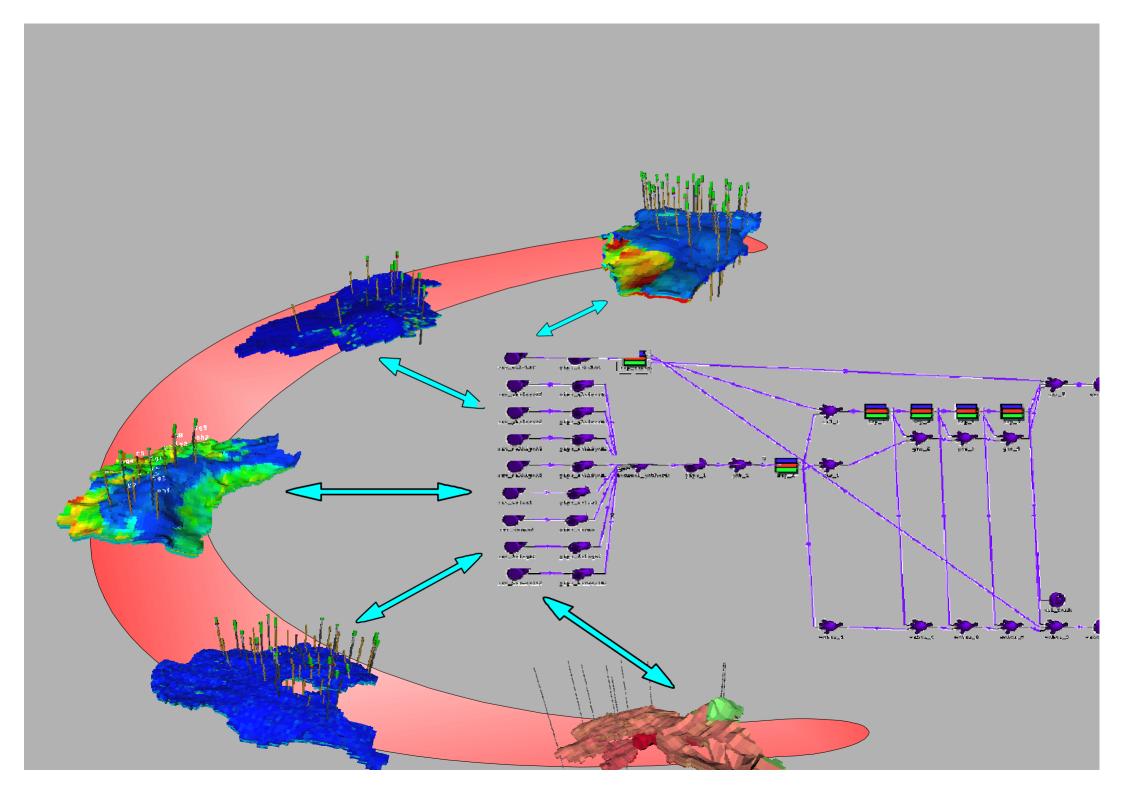
- Mass conservation is important
 - n Flux from (two or more point) pressure gradient
 - n Mass balance & Volume balance imposed for finite grid block volumes
- One-phase incompressible flow (simplified liquid)
 - n Laplace equation for pressure (*elliptic*)
- I One phase, compressible flow (gas) (parabolic)
- n multi-phase, incompressible, flow:
 - n Convection equation (hyperbolic)
- Solve the equations fast and accurately
- Newton-Raphson method
- I Multi-grid methods, Domain decomposition
- Parallelization











- . Exploration
- . Production

.

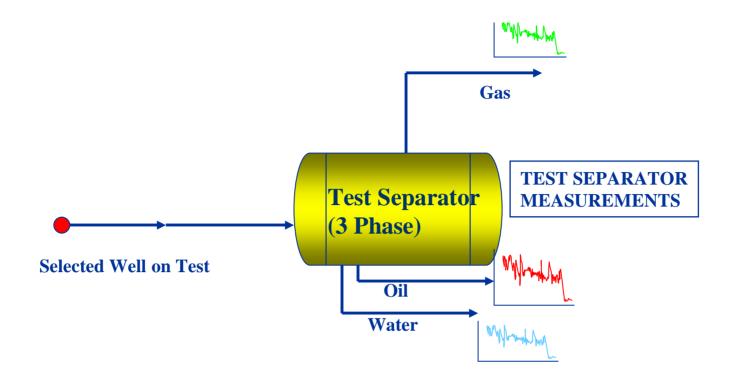
Production Operations The real production of oil – and gas A Stopping Time Problem: Production Well Testing

The Mathematics of Engineering

Offshore 'Champion' Field in Brunei

transportation tubing

headers separators



well testing traditionally: physical model about separation process in separator. Test times: >= 48 hours, many 'rejections'

Well testing solved as stopping time problem using only separator outputs:

Test times: <= 3 hours; hardly any rejections

Let
$$\alpha, \beta, \gamma, T_{minimal} \in \mathbb{R}^+$$
 and $k_1, k_2 \in \mathbb{N}$, $k_1 < k_2$
 $T_{candidate} = \{k \in \mathbb{N} \mid \beta \ge max_{l \in \{k_1, k_2\}} \mid \mathcal{A}(Q)(k) - \mathcal{S}^l(\mathcal{A}(Q))(k) \mid \}$
 $T_{candidate} = \bigcup_{i=1}^{N_{candidate}} T_{candidate}^i$
For some $i \in \{1, N_{candidate}\} \subset \mathbb{N}$, well type specific Algorithm
 $T_{select}^i = \{k \in \mathbb{N} \mid |\mathcal{F}(\mathcal{A})(k)| \le \alpha, k \in \mathbb{T}_{candidate}^i\}$
 $T_{select}^i = \bigcup_{j=1}^{N_{select}^i} T_{select}^{i,j}$
Reorder number the $N_{select} := \sum_{j=1}^{N_{candidate}} N_{select}^j$ selected periods using the index function $m : \{(i, j) \mid 1 \le i \le N_{candidate}, 1 \le j \le N_{select}^i\} \rightarrow \{1, \dots, N_{select}\}$, defined by

The m_{ij} -th selected period is:

 $T_{select}^{m_{ij}} := \{\tau_b^{m_{ij}}, \tau_e^{m_{ij}}\}$

The total selected period is:

 $T_{select} = \bigcup_{m_{ij}=1}^{N_{select}} T_{select}^{m_{ij}}$

Define

$$\Omega(k) = \{\tau_b^{m_{i_1j_1}}, \tau_e^{m_{i_1j_1}}\} \cup \dots \cup \{\tau_b^{m_{i_{n-1}j_{n-1}}}, \tau_e^{m_{i_1j_1}}\} \cup \{\tau_b^{m_{i_nj_n}}, k\} \subseteq T_{select}$$
 Then

$$T_{STOP} = min\{k \mid k \in T_{select} \bigwedge \mathcal{P}_{time}(Q)(k) < \gamma \bigwedge |\Omega(k)| \ge T_{minimal}\}$$

time statistic

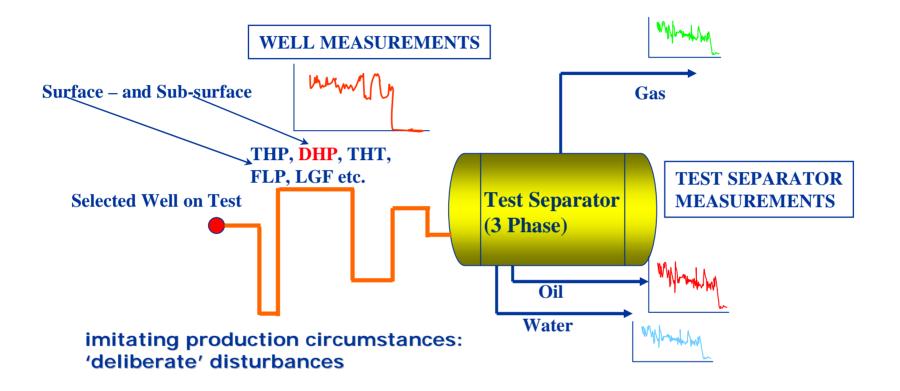
- . Exploration
- . Production
- . Production Operations

. A First Paradigm Shift

End of Physical Models Monopoly! Dynamic Systems: Real-Time Production Monitoring

everything constructed from the DATA

production system 'anonymous' data generator



Build Models using Well Test Data

Assume that X is a compact metric space.

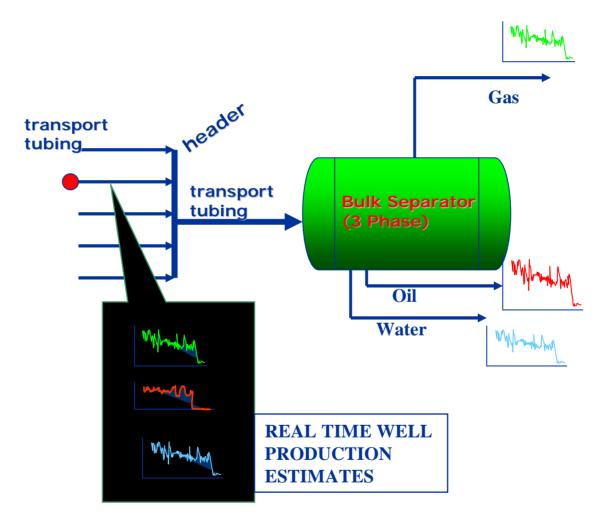
Identify from well test experiment $\mathbf{F}: \mathbb{X} \to \mathbb{X}$

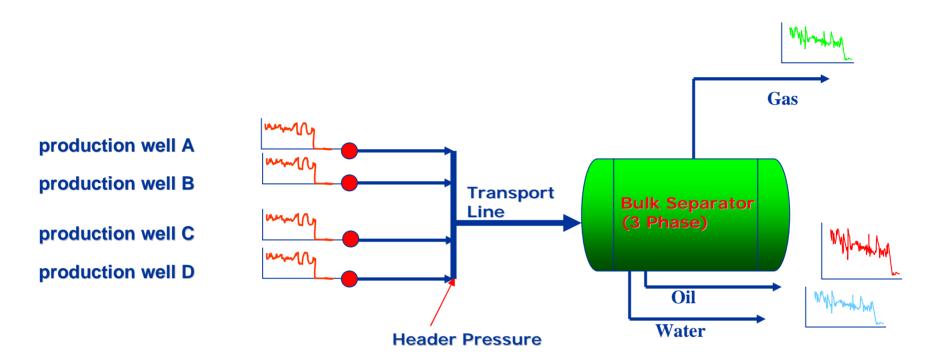
$$\mathbf{F}(\psi) = \begin{pmatrix} \mathbf{f}(\psi) \\ \mathbf{S}(u) \end{pmatrix}$$

F viewed as dynamical system: ξ follows ψ if $\xi = \mathbf{F}^n(\psi)$ for some n = 1, 2, ...Identify **F** and its iterates with their graphs in $\mathbb{X} \times \mathbb{X}$.

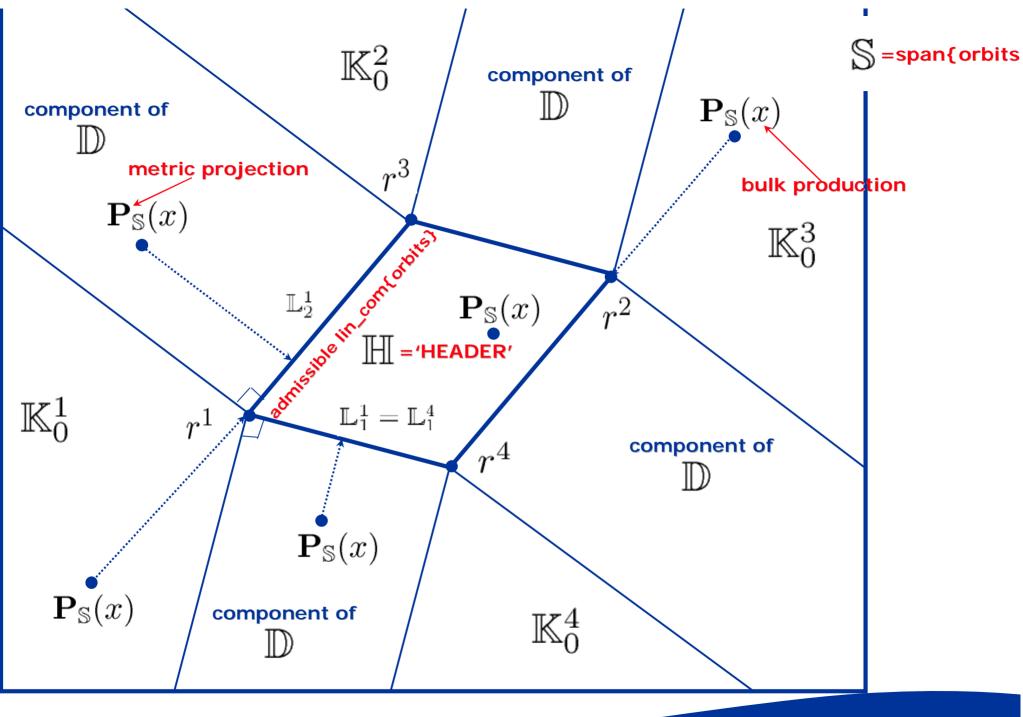
$$\mathcal{O}\mathbf{F} = \bigcup_{n=1}^{\infty} \mathbf{F}^n$$
$$(\xi, \psi) \in \mathcal{O}\mathbf{F} \Leftrightarrow \xi = \mathbf{F}^n(\psi) \text{ for some } n = 1, 2, \dots$$
$$\mathcal{O}\mathbf{F}(\psi) = \{\mathbf{F}(\psi), \mathbf{F}^2(\psi), \dots\} \text{ positive orbit}$$

the orbits for each well give the production estimates for each well





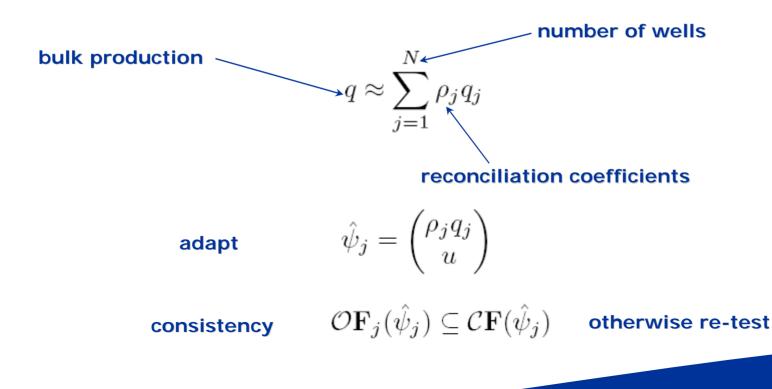
Daily Reconciliation compare and adjust individual Estimates against bulk metering.



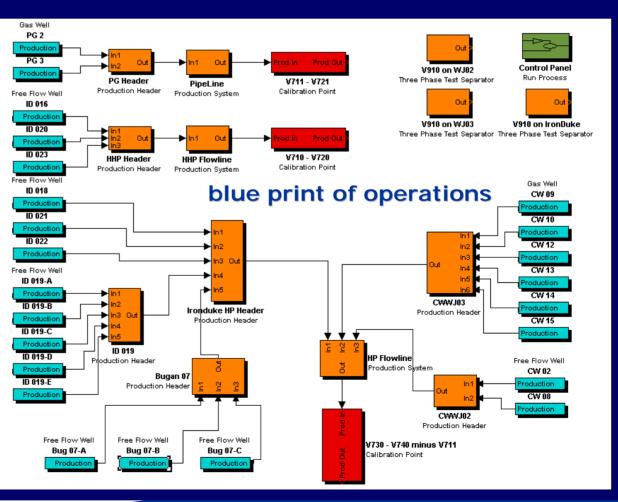
$$\mathbb{V}_{\epsilon} = \{(\psi_1, \psi_2) \in \mathbb{X} \times \mathbb{X} \mid d(\psi_1, \psi_2) \le \epsilon\}$$

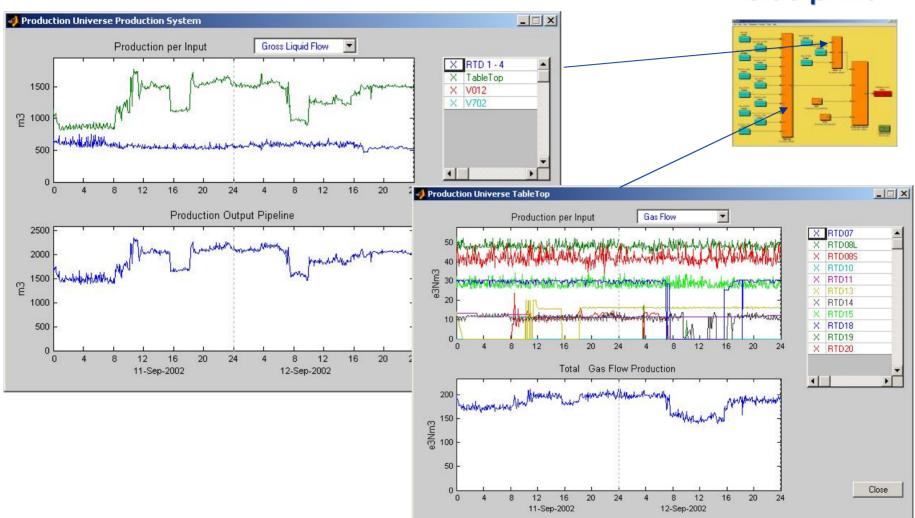
 ϵ -chain $\{\psi_n\}: \psi_{n+1} \in \mathbb{V}_{\epsilon}(\mathbf{F}(\psi_n))$

 $\mathcal{C}\mathbf{F} = \bigcap \{\mathcal{O}(\mathbb{V}_{\epsilon} \circ \mathbf{F}) \mid \epsilon > 0\} \quad \text{(chain recurrent set)} \\ \xi \in \mathcal{C}\mathbf{F}(\psi) \Leftrightarrow \forall \epsilon \exists \epsilon \text{-chain beginning at } \psi \text{ and ending at } \xi$



Brunei – Iron Duke and Champion Oil Platforms

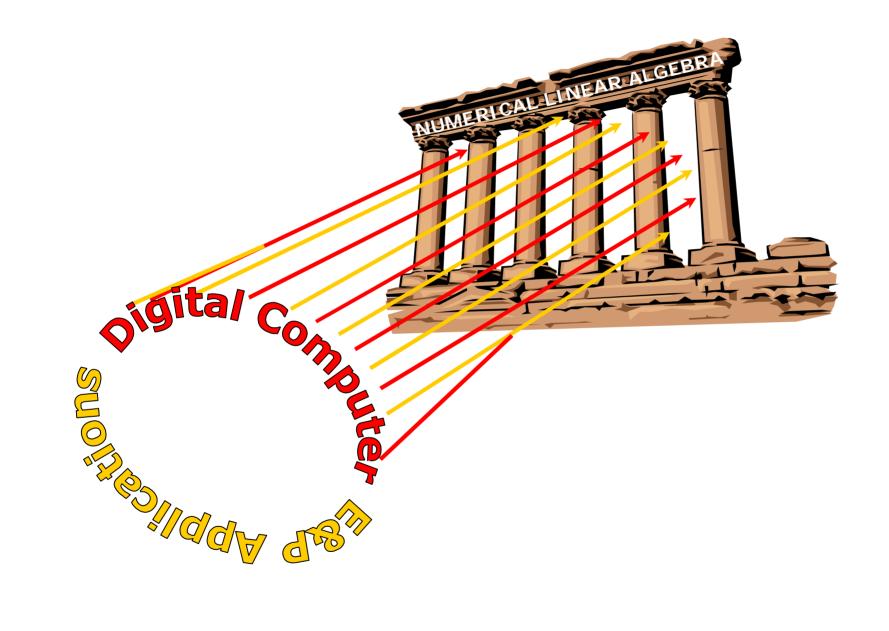




blue print

- . Exploration
- . Production
- . **Production Operations**
- . A First Paradigm Shift
- . A Second Paradigm Shift End of Digital Computer Monopoly?

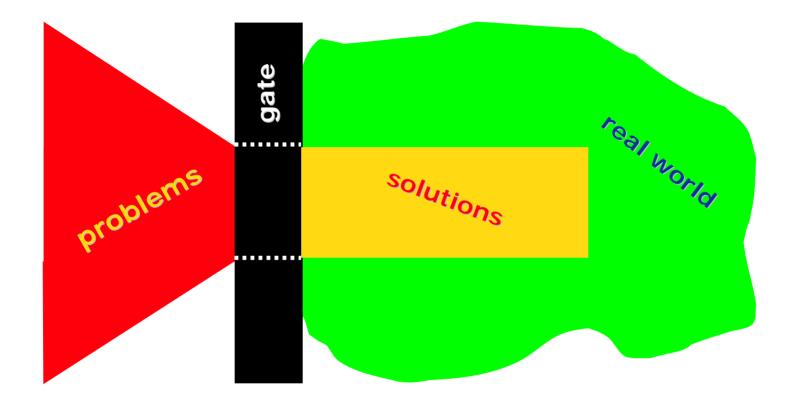
algebraic structures



Observation

Despite their original variability, virtually all 'digital computer' applications sooner or later have to fit into the algebraic structure of a Vector Space on which 'scalars' operate that come from the Field of real – or complex numbers

Top View



Is the 'Gate' for at least some Problems too narrow?

Widening the 'Gate':

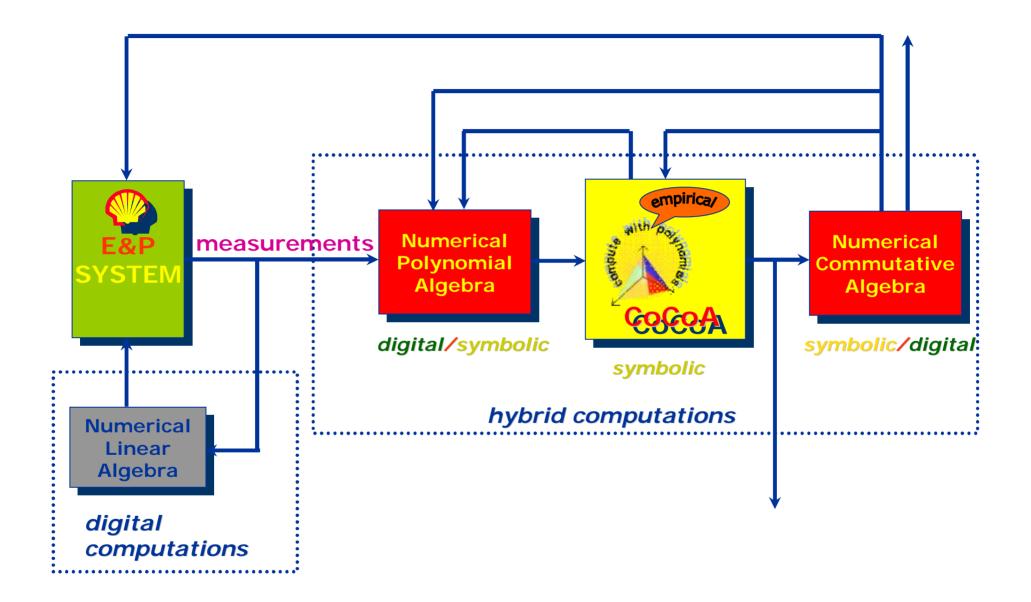
Let the applications to end up in the algebraic structure of a Module, where the 'scalars' are allowed to come

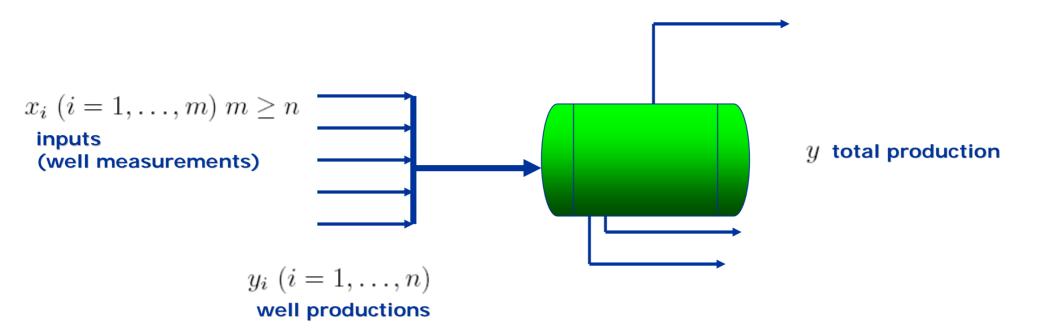
From an – arbitrary - Ring

Can this idea be realized?

- . Exploration
- . Production
- . **Production Operations**
- . A First Paradigm Shift
- . A Second Paradigm Shift
- . Algebraic Encounters of the First Kind CoCoA Syzygies: Attacking the Ultimate Recovery

Computer algebra





Consider the Polynomial Ring $\mathbf{R} = \mathbb{R}[x_1, \dots, x_m]$

Construct the empirical productions $y, y_1, \ldots, y_n \in \mathbb{R}[x_1, \ldots, x_m]$ from the Data

By considering the tuple $W = (y_1, \ldots, y_n, y)$ of the **R**-module \mathcal{M}

Find the DECOMPOSITION of y given by:

$$y = h_1 y_1 + \dots + h_n y_n$$

where

$$h_i \in \mathbb{R}[x_1, \ldots, x_n]$$

no unique mathematical solution

• Syzygy module $Syz_{\mathbf{R}}(y_1, \ldots, y_n)$ gives information how many representations in y_1, \ldots, y_n exist

- only one of them is physically realizable
 - changing term ordering on basis of physical significance of the $\,x_i$
 - e.g. "all surface quantities precede all sub-surface ones"
- h_i in representation of y reveal
 - interrelationships among the wells
 - $h_i(x_k,\cdots)$, j well number i
 eq j
 - surface sub-surface relationship=> optimization

 h_i depending on sub-surface inputs = >'ultimate recovery'

Some Considerations

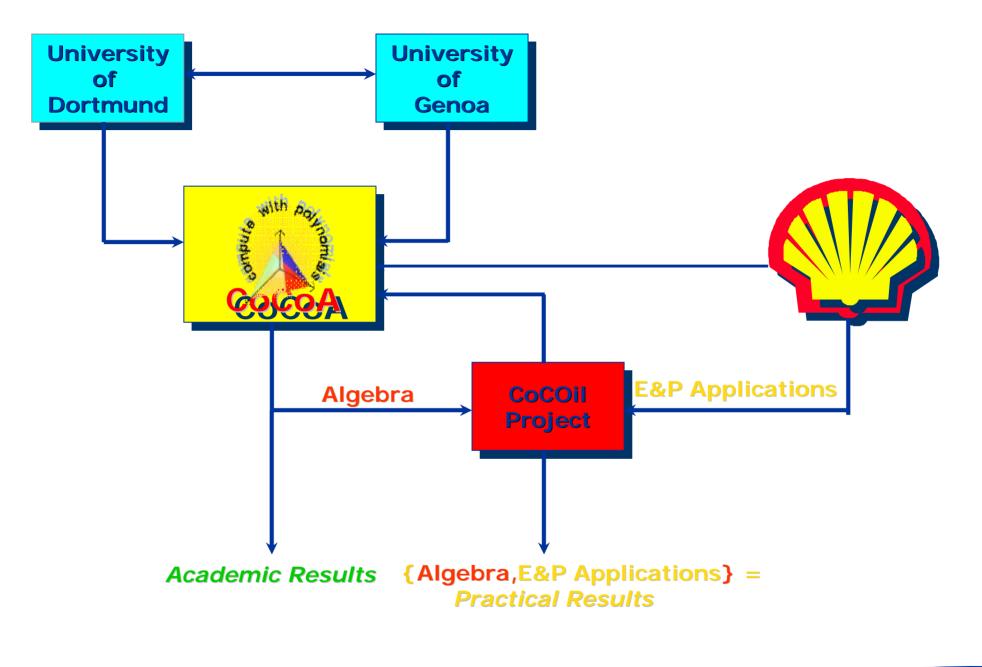
 'hardware' elements of production system have context dependent mathematical equivalents

- Header as Convex Set, and as I deal
- abstract description of 'practice'
 - term order to capture work sequence of 'production operators'
- 'user' does NOT impose complexity on the system through the choice of a – physical – model
- system reveals its own complexity through the measurements
- 'scale' of measurements and that of physical model may not be compatible

 -dynamic- models extracted from the measurements always on the 'right' scale

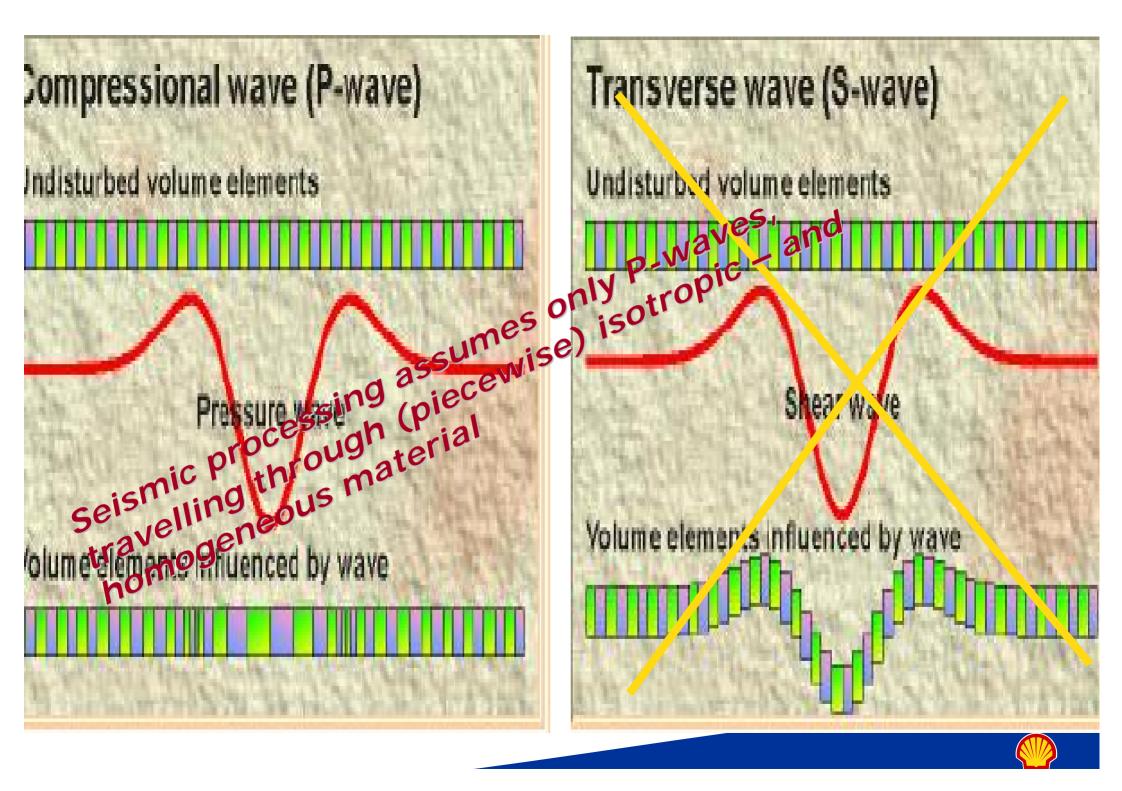
- . Exploration
- . Production
- . **Production Operations**
- . A First Paradigm Shift
- . A Second Paradigm Shift
- . Algebraic Encounters of the First Kind
- . The CoCOil Research Programme A sequence of {Algebra, E&P Application} pairs

We proudly present....



Algebraic Subject	E & P Application
Syzygies	Interrelationships Sub-surface ó Surface Relationship: Ultimate Recovery
Differential Gröbner Basis	Dynamical Systems Including long-term changes=>Forecasting, Reservoir management. Special activity: Good Slugs, using the energy generated by slugs for production – and exploration (see last pair) applications
Elimination Theory	www2.m Acronym for 'Where, when, what to measure'. Minimal requirements technical infra structure.
Invariant Theory	Generic elements Global exchange of information
Homotopy	Test versus Production The change from the test - to the production situation for a well is viewed as a continuous deformation of the well test model
Automated Theorem Proving	Diagnostics and Decisions Including relationships between processes that run on different time scales, e.g. early recognition of building-up water break through. Subject may be considered as next generation Artificial Intelligence.
Computational Homology	Surface characterization Surface characterization of sub-surface through computation of homology groups. Of particular importance for last pair.
D - Modules	Non-seismic Exploration This application is possible since this algebraic subject allows the consideration of spatial variation. This pair is coupled with the first – and second pair.

Backup slides



Deviated, branched wells (multi-zone wells)

Difficult to align grid lines with a non-vertical well paths

Locally refined grids, for high resolution near the wells

