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Huge Time Scale
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Last Glacial Maximum 18,000 years agn

TH INDIAN
ATLANTIC & JC.) (OCEAN

BasCE i

OCEAN

Ancient Landmass
Madarn Landmais |:--:::I

Subduction fore {l.rl;ir‘q;es podnt in tha
direction af subducdon) ﬁ'

) T - e U
Sea Floor Spreading Ridoe {!l‘




Modern World

T

 Siberia

South !
America b .—‘i' .;;'? CENTRAL
: INDIAN




Exploration
Basic Seismic
The Wave Equation

Seismic Exploration

Geophysics
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Modern technology
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The Interpreter at work




Source Receivers

Wavefront
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wave equation

A T
‘ source

pressure field

wave equation operator

T Laplacian

c is sound velocity; ¢c = c(X,Y,z)

specification c for different layers is velocity model m

W =W(m) n@



Inversion
Find the best model m that explains the data

min J(m)  with

J(m) = é (v, (m) - V|ObS )|2

st., W(m)v =f

General approach too difficult, J has local minima

Migration: an initial model, m,, is assumed known

P g



A large number of approaches for the Migration problem

Here just one example
wave equation Helmholtz equation

2

Er,- o= ST - o=
eC 7] ¢ o

Discretize: Av=F
Solution: A=LU
L is lower triangular, U Is upper triangular

back substitution: v=U-1L-IF

P g



2D example
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2D example
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(1,10,15, and 20 iterations)
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The Geophysics of seismic 4D

surveyl survey 2

production e
¢ —> = water
— dt

dA

4D seismic amplitude and timing changes with production
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3 of many history matched water flood simulations (simulation of production using water injection)
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Time-lapse Seismic
1990
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Dynamic model updating using 4D

updated
| t
npULs flow model
- 4D seismic
- pre 4D
model

results




3.

Production
Reservoir Engineering

Darcy’s Law

Flow Through Porous Media



What is Reservoir Engineering?

How to recover the maximum amount of oil (and/Zor gas) from a reservoir

Oil and gas under high pressure in sub-surface reservoirs

| Inside porous rock (e.g. sand stone) below a sealing cap rock

| Does more wells mean more oil?
n Pressure drops below reservoir pressure, oil flow stops
n Improve recovery by water injection (or gas): pump up the pressure
n Or more advanced methods: steam injection, surfactants

I Where to drill these wells and how and when

n vertical wells, deviated or horizontal wells

n multi-laterals (more expensive)

I Reservoir engineers design a “Field development plan”

P g
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To optimize oil and gas recovery computer simulations are used
I Capture reservoir structure and geometry in a discrete model
I Compute how oil and gas flows through the reservoir rock
Depends on
u Initial state (pressure, which fluids etc.)
u wells

u Fluid properties(oil viscosity), rock properties (porosity, permeability)

Fast method to solve the flow equations is necessary
I  Simulate the history of a reservoir over 20-50 years

I  Huge models with 100,000 to 1,000,000 grid cels

P g



Flow Equations, to be solved numerically
Can be derived from Navier Stokes Equation

Is-= M>U+Q Saturation Equation

fit

source (injection)

total flow

divergence

saturation

lljp :Kel(K/ n‘)l\l(p+ pcap+&rh_/g) Darcy’s Law

I hydrostatic pressure
- capillary pressure
pressure
gradient
Vviscosity
permeability
(rock property)
‘rel perm’

(depends on S



Finite volume discretization
I Mass conservation is important
n Flux from (two or more point) pressure gradient

n Mass balance & Volume balance imposed for finite grid block
volumes

I One-phase incompressible flow (simplified liquid)
n Laplace equation for pressure (elliptic)

I One phase, compressible flow (gas) (parabolic)

1 multi-phase, incompressible, flow:

n Convection equation (hyperbolic)

Solve the equations fast and accurately
I  Newton-Raphson method
1 Multi-grid methods, Domain decomposition

P g

1 Parallelization
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Production Operations
The real production of oil — and gas

A Stopping Time Problem: Production Well Testing

The Mathematics of Engineering
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TEST SEPARATOR
MEASUREMENTS

sy
T [

well testing traditionally: physical model about separation process in separator.
Test times: >= 48 hours, many ‘rejections’

[
»

Selected Well on Test

A 4

Well testing solved as stopping time problem using only separator outputs:

Test times: <= 3 hours; hardly any rejections
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Let cx, ."33 Fa Tmirzimal S Rt and ;,311 k? c N ) 'I'jl < k?

Tc-:r,ndidcnfe — {k' cN | 3= = MAT]e{ky k) |A|:Q — ‘FI(A Q |}
T andidate = U;Ei”"d”““ didate backward shift operator
) production

For some i € {1, Neandidate } C N, well type specific Algorithm

7 . 1
select {'I“ S N | |F(‘A (k | 'Il S cmtdidﬂte}
. "'Hi P
i _ aelect LEN
select U_j:l select
'“"h'l_ . ""'cmmi-ad,n:r,te 1||.._'.'|' . d
Reorder number the N, ..t = ZJ -1 N ..; selected periods using the
index tul_lc'.tmn m : {(i,7) | 1 < i < Nendidate » 1 = 7 < NI, .} —
11,..., Nocieet |, defined by
m;; = E . 1|I|'5-35&1:1‘ +1it> 1
mi; = ] -i =1
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The m;;-th selected period 1s:

Tmij oMy mj
P { Jb s le }

select
The total selected period is

UNS elect mMij

mij=1 = select

Ts&iecf. —

Define
- My JIF M {dn— _m —
(k)= {74,700 {0 U b C T

Then

TSTDP = 'T?l‘iﬂ-”m‘- | k € Tsrzieuf. /\ Ptimr:(@)( 4 <7 /\| rmra nmi}

time statistic

P g



A First Paradigm Shift
End of Physical Models Monopoly!

Dynamic Systems: Real-Time Production Monitoring

e everything constructed from the DATA
e production system ‘anonymous’ data generator



WELL MEASUREMENTS M

Surface—and Sub-%‘w Gas >

THP, DHP, THT,

TEST SEPARATOR

FLP, LGF etc.
Selected Well on Test Test Separator MEASUREMENTS
(3 Phase)

iImitating production circumstances:
‘deliberate’ disturbances



.- q \* well production
=
' < input(s)

Assume that X is a compact metric space.

[dentify from well test experiment F : X — X

(v ))
S(u)
I7shift map

F viewed as dynamical system: £ follows ¢ if £ = F"(¢) for some n = 1,2, .

[dentify F and its iterates with their graphs in X x X

OF = UF”
n=1

(£,0) € OF < £ = F"(¢) for somen = 1,2, ...
OF () = {F(), F*(1),. ..} positive orbit

P g



the orbits for each well give the production estimates for each well

<
transport o\4

(o
tubing o \\©

transport
tubing

REAL TIME WELL
PRODUCTION
ESTIMATES




production well A

production well B

production well C

production well D

A 4

:

Transport
Line

Bl Sepanator

(2 Prizise)

Water

Header Pressure

Daily Reconciliation
compar e and adjust individual
Estimates against bulk metering.
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metric projection
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Ve ={(¢1,1U0) e X x X | d(1)1,10) < €}

e-chain {1, } : ¥,11 € Ve (F(1,))

CF = ﬂ{O(VE oF) | e> 0} (chainrecurrent set)

¢ € CF(v) < Ve 3 e-chain beginning at ¢ and ending at £

number of wells
bulk production \ ‘u/
~ Pj4;

g=1

reconciliation coefficients

adapt | .-’-1 (f-’:} 9’3)

consistency OF;(v;) € CF(v;) otherwise re-test

P g
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<} Production Universe Production System
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A Second Paradigm Shift
End of Digital Computer Monopoly?

algebraic structures






Observation

Despite their original variability, virtually all ‘digital computer’
applications sooner or later have to fit into the algebraic

structure of a Vector Space on which ‘scalars’ operate that come

from the Field of real — or complex numbers



Top View

Is the ‘Gate’ for at least some Problems too narrow?

- R, B



Widening the ‘Gate’:
Let the applications to end up in the algebraic structure

of a Module, where the ‘scalars’ are allowed to come

From an — arbitrary - Ring

Can this idea be realized?

P g



Algebraic Encounters of the First Kind
CoCoA
Syzygies: Attacking the Ultimate Recovery

Computer algebra



Numerical Numerical
Polynomial _ Commutative
Algebra Algebra

digital/ /digital:

hybrid computations

digital
computations



r(t=1,....m)m=>n

iInputs

(well measurements) Yy total production

yi (i=1,...,n)

well productions

Consider the Polynomial Ring R = Rlzy,. .., x,,]

Construct the empirical productions ¥, Y1,.... Y, < [@.[;1‘-1, .+« s Lyp| from the Data

- R, B



By considering the tuple W = (yy, ..., y,,y) of the R-module M

Find the DECOMPOSITION of y given l)yzl

Y= ]1-1'3;’1 + T h'-n'yn

where

hi € Rlzy, ... 2y



e N0 uniqgue mathematical solution
e Syzygy module Syzr(vi,...,yn) gives information how many
representations in Y1,.--,Yn exist
e only one of them is physically realizable
e changing term ordering on basis of physical significance of the Z;
e.g. all surface quantities precede all sub-surface ones”
 h; in representation of ¥ reveal
e interrelationships among the wells

hi(Tg,++) . j well number ¢ # j
e surface — sub-surface relationship==>= optimization

h; depending on sub-surface inputs==>'ultimate recovery’

- R, B



Some Considerations

e ‘hardware’ elements of production system have context dependent
mathematical equivalents

e Header as Convex Set, and as ldeal
e abstract description of ‘practice’

e term order to capture work sequence of ‘production operators’
e ‘user’ does NOT impose complexity on the system through the choice of a
— physical — model
e system reveals its own complexity through the measurements
e ‘scale’ of measurements and that of physical model may not be
compatible
e -dynamic- models extracted from the measurements always on the ‘right’
scale

P g



The CoCOil Research Programme
A sequence of {Algebra, E&P Application} pairs

We proudly present....



University
of
Dortmund

University
of

\/
Academic Results {Algebra, ¥
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Algebraic Subject E & P Application

Syzygies Interrelationships
Sub-surface & Surface Relationship: Ultimate Recovery

Differential Dynamical Systems

Grobner Basis Including long-term changes=>Forecasting, Reservoir management. Special
activity: Good Slugs, using the energy generated by slugs for production — and
exploration (see last pair) applications

Elimination www?2.m
Theory Acronym for 'Where, when, what to measure’. Minimal requirements technical
infra structure.

Invariant Generic elements
Theory Global exchange of information
Homotopy Test versus Production

The change from the test - to the production situation for a well is viewed as a
continuous deformation of the well test model

Automated Diagnostics and Decisions

Theorem Proving Including relationships between processes that run on different time scales, e.g.
early recognition of building-up water break through. Subject may be considered
as next generation Artificial Intelligence.

Computational Surface characterization
Homology Surface characterization of sub-surface through computation
of homology groups. Of particular importance for last pair.

D - Modules Non-seismic Exploration
This application is possible since this algebraic subject allows the consideration of
spatial variation. This pair is coupled with the first — and second pair.



Backup slides



Jompressional wave (P-wave} Transverse wave ($-wave)

Indisturbed volume elements Undisturbad volume elements
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Deviated, branched wells (multi-zone wells)

vertical well paths

Difficult to align grid lines with a non

Locally refined grids, for high resolution near the wells







