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1 – Some Problems in Oil Production

Impossible only means

that you haven’t found the solution yet.

(Anonymous)

Figure 1: Overview of an Oil Production System
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Schematic Representation of the System
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Measurement time series are available for individual zone producing

separately (well test) and for the situation when they all produce

simultaneously.
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The Production Modelling Problem

Assume that no a priori model is available to describe the

production of a well in terms of measurable physical quantities.

Find an algebraic model of the production in terms of the

determining, measurable physical quantities which specifically models

the interactions occurring in this production unit.

Find such a model which correctly predicts the behavior of the

production system over longer time periods (weeks or even

months).
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The Production Allocation Problem

Let g1, . . . , gs ∈ R[x1, . . . , xn] be the model polynomials for the

individual zones, and let f ∈ R[x1, . . . , xn] be the model polynomial

for the total production. Since the zones are interacting, we are

looking for a relationship of the form

f = h1 g1 + · · · + hs gs

where hi ∈ R[x1, . . . , xn] may also involve indeterminates xj

corresponding to quantities measured at other zones j 6= i.

This is an approximate explicit membership problem.
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Applications of Production Allocation

(1) Wells with zones inside and outside the region of tax authority of

some country

(2) Wells managed jointly by different companies
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The Ultimate Recovery Problem

Figure 2: Long Term Changes in an Oil Field
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Schematic Representation of the Changes

Figure 3: Schematic Changes in an Oil Field
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Application to Ultimate Recovery

Based on a long term model, formulate a production strategy to

increase the current value of 30% for the ultimate recovery.
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2 – Border Bases

When they started to prove even the simplest claims,

many turned out to be wrong

(Bertrand Russell)

P = R[x1, . . . , xn] polynomial ring over the reals

I ⊆ P zero-dimensional polynomial ideal (i.e. dimR(P/I) < ∞)

T
n = {xα1

1 · · ·xαn
n | αi ≥ 0} monoid of terms
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Definition of Border Bases

Definition 2.1 (a) A (finite) set O ⊂ T
n is called an order ideal if

t ∈ O and t′ | t implies t′ ∈ O.

(b) Let O be an order ideal. The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is

called the border of O.

(c) Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν} its

border. A set of polynomials {g1, . . . , gν} ⊂ I of the form

gj = bj −
µ∑

i=1

cijti

with cij ∈ R and ti ∈ O is called an O-border prebasis of I.

(d) An O-border prebasis of I is called an O-border basis of I if the

residue classes of the terms in O are a R-vector space basis of P/I.
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A Picture of an Order Ideal and its Border
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Neighbors

Definition 2.2 Let bi, bj ∈ ∂O be two distinct border terms.

(a) The border terms bi and bj are called next-door neighbors if

bi = xk bj for some k ∈ {1, . . . , n}.

(b) The border terms bi and bj are called across-the-street

neighbors if xk bi = x` bj for some k, ` ∈ {1, . . . , n}.

(c) The border terms bi and bj are called neighbors if they are

next-door neighbors or across-the-street neighbors.

(d) The graph whose vertices are the border terms and whose edges

are given by the neighbor relation is called the border web of O.
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Example 2.3 The border of O = {1, x, y, xy} is

∂O = {x2, x2y, xy2, y2}. Here the border web looks as follows:

(x2, x2y) and (y2, xy2) are next-door neighbor pairs

(x2y, xy2) is an across-the-street neighbor pair.
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Proposition 2.4 The border web is connected.
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Neighbor Syzygies

Definition 2.5 (a) For t, t′ ∈ T
n, we call the pair

(lcm(t, t′)/t,− lcm(t, t′)/t′) the fundamental syzygy of (t, t′).

(b) The fundamental syzygies of neighboring border terms are also

called the neighbor syzygies.

Definition 2.6 Let gi, gj ∈ G be two distinct border prebasis

polynomials. Then the polynomial

Sij = (lcm(bi, bj)/bi) · gi − (lcm(bi, bj)/bj) · gj

is called the S-polynomial of gi and gj .
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Remark 2.7 Let gi, gj ∈ G.

(a) If (bi, bj) are next-door neighbors with bj = xk bi then NRG(Sij)

is of the form NRG(Sij) = gj − xk gi −
∑µ

m=1
amgm with am ∈ R.

(b) If (bi, bj) are across-the-street neighbors with xk bi = x` bj then

NRG(Sij) is of the form NRG(Sij) = xk gi − x` gj −
∑µ

m=1
amgm with

am ∈ R.

(3) If NRO,G(Sij) = 0, we shall say that the syzygy

ej − xk ei −
∑µ

m=1
amem resp. xk ei − x` ej −

∑µ

m=1
amem is a

lifting of the neighbor syzygy ej − xk ei resp. xk ei − x` ej .

Theorem 2.8 (Stetter)

An O-border prebasis G is an O-border basis if and only if the

neighbor syzygies lift.
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Border Bases and Multiplication Matrices

For r ∈ {1, . . . , n}, we define the r-th formal multiplication

matrix Ar as follows:

Multiply ti ∈ O by xr. If xrti = bj is in the border of O, rewrite it

using the prebasis polynomial gj = bj −
∑µ

k=1
ckjtk and put

(c1, . . . , cµ) into the i-th column of Ar. But if xrti = tj then put the

j-th unit vector into the i-th column of Ar.

Theorem 2.9 (Mourrain)

The set G is the O-border basis of I if and only if the formal

multiplication matrices commute, i.e. iff

Ai Aj = Aj Ai for 1 ≤ i < j ≤ n.
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The Border Basis Scheme

Idea: Use the Commuting Multiplication Matrices / Buchberger

Criterion to paramatrize O-border bases. Given an O-border prebasis

G = {g1, . . . , gν} with

gj = bj −
µ∑

i=1

cijti

consider the cij as indeterminates. Let IO be the ideal in K[cij ]

generated by the entries of all AiAj −AjAi.

The affine subscheme BO of Kµν defined by IO is called the

O-border basis scheme. Its points correspond 1-1 to the ideals

having an O-border basis.

19



Properties of the Border Basis Scheme

(1) The scheme BO corresponds to an open subset of the Hilbert

scheme Hilbs(An).

(2) The scheme BO comes equipped with a universal flat family

whose fibers correspond to the rings P/〈G〉 where G is an O-border

basis.

(3) A rational curve C ⊆ BO which connects the point corresponding

to a given ideal I = 〈G〉 to the point corresponding to the border

term ideal 〈b1, . . . , bν〉 is nothing but a flat deformation from P/I

to P/〈b1, . . . , bν〉.
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3 – Approximate Border Bases

I had a fortune cookie the other day and it said:

“Outlook not so good!”

“Sure, but Microsoft ships it anyway!”

Motivation: Suppose we are given some points X = {p1, . . . , ps}

in R
n. When does a polynomial vanish approximately at X?

Let ε > 0 be a given threshold number. We say

that f ∈ P = R[x1, . . . , xn] vanishes ε-approximately at X if

|f(pi)| < ε for i = 1, . . . , s.

Problem 1: The polynomials which vanish ε-approximately at X do

not form an ideal!

Problem 2: All polynomials with very small coefficients vanish

ε-approximately at X!
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Therefore we need to measure the size of a polynomial. In other

words, we need a topology on R[x1, . . . , xn].

Definition 3.1 Let f = a1t1 + · · · + asts ∈ P , where

a1, . . . , as ∈ R \ {0} and t1, . . . , ts ∈ T
n. Then the number

‖f‖ = ‖(a1, . . . , as)‖ is called the (Euclidean) norm of f .

Clearly, this definition turns P into a normed vector space. Now it is

reasonable to consider the condition that polynomials f ∈ P with

‖f‖ = 1 vanish ε-approximately at X.

Definition 3.2 An ideal I ⊆ P is called an ε-approximate

vanishing ideal of X if there exists a system of generators

{f1, . . . , fr} of I such that ‖fi‖ = 1 and fi vanishes ε-approximately

at X for i = 1, . . . , r.
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Definition of Approximate Border Bases

Definition 3.3 Let O = {t1, . . . , tµ} be an order ideal, let

∂O = {b1, . . . , bν}, and let ε > 0.

A set of polynomials G = {g1, . . . , gν} is called an ε-approximate

O-border basis if the following conditions are satisfied:

1. For j = 1, . . . , ν, we have ‖gj‖ = 1.

2. If aj denotes the coefficient of bj in gj then |aj | > ε and

{ 1

aj
g1, . . . ,

1

aν
gν} is an O-border prebasis.

3. For all pairs (i, j) such that (bi, bj) are neighbors, we have

‖NRO,G(Sij)‖ < ε.
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Remark 3.4 If G = {g1, . . . , gν} is an ε-approximate border basis

then the point (c11, . . . , cµν) in R
µν given by its coefficients is close

to the border basis scheme.

Example 3.5 Let O = {1, x, y, xy}. Then the set

g1 = x2 + 0.02xy − 0.01y − 1.01 g2 = x2y + 0.03x − 0.98 y

g3 = xy2 − 1.02 x g4 = y2 − 0.99

is an approximate O-border basis. The ideal I = 〈g1, g2, g3, g4〉 is the

unit ideal, since g3 − x g4 = 0.03x shows −g1 ≡ 0.01y + 1.01 and

g4 ≡ 1012 − 0.99 (mod I).
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4 – The AVI Algorithm

We all know Linux is great...

it does infinite loops in 5 seconds.

(Linus Torvalds)

Goal: Given a set of (approximate) points X = {p1, . . . , ps} in R
n

and ε > 0, find an order ideal O and an approximate O-border basis

G such that the polynomials in G vanish ε-approximately at the

points of X.

Notice that, in general,

• we have #O << #X,

• the ideal 〈G〉 is the unit ideal.
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Theorem 4.1 (The Singular Value Decomposition)

Let A ∈ Matm,n(R).

1. There are orthogonal matrices U ∈ Matm,m(R) and

V ∈ Matn,n(R) and a matrix S ∈ Matm,n(R) of the form

S =


D 0

0 0


 such that

A = U · S · Vtr = U ·


D 0

0 0


 · Vtr

where D = diag(s1, . . . , sr) is a diagonal matrix.

2. In this decomposition, it is possible to achieve

s1 ≥ s2 ≥ · · · ≥ sr > 0. The numbers s1, . . . , sr depend only on A

and are called the singular values of A.
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3. The number r is the rank of A.

4. The matrices U and V have the following interpretation:

first r columns of U ≡ ONB of the column space of A

last m − r columns of U ≡ ONB of the kernel of Atr

first r columns of V ≡ ONB of the row space of A

≡ ONB of the column space of Atr

last n − r columns of V ≡ ONB of the kernel of A
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Corollary 4.2 Let A ∈ Matm,n(R), and let ε > 0 be given. Let

k ∈ {1, . . . , r} be chosen such that sk > ε ≥ sk+1. Form the matrix

Ã = U S̃ Vtr by setting sk+1 = · · · = sr = 0 in S. The matrix Ã is

called the singular value truncation of A.

1. We have min{‖A − B‖ : rank(B) ≤ k} = ‖A − Ã‖ = sk+1. (Here

‖ · · · ‖ denotes the 2-operator norm of a matrix.)

2. The vector subspace apker(A, ε) = ker(Ã) is the largest

dimensional kernel of a matrix whose Euclidean distance from A

is at most ε. It is called the ε-approximate kernel of A.

3. The last n − k columns vk+1, . . . , vn of V are an ONB

of apker(A, ε). They satisfy ‖Avi‖ < ε.
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Theorem 4.3 (The AVI Algorithm)

The following algorithm computes an approximate border basis of an

approximate vanishing ideal of a finite set of points X ⊆ [−1,1]n.

A1 Start with lists G = ∅, O = [1], a matrix

M = (1, . . . , 1)tr ∈ Mats,1(R), and d = 0.

A2 Increase d by one and let L be the list of all terms of degree d

in ∂O, ordered decreasingly w.r.t. σ. If L = ∅, return the pair

(G,O) and stop. Otherwise, let L = (t1, . . . , t`).

A3 Let m be the number of columns of M. Form the matrix

A = (eval(t1), . . . , eval(t`),M) ∈ Mats,`+m(R).

Using its SVD, calculate a matrix B whose column vectors are

an ONB of the approximate kernel apker(A, ε).
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A4 Compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix

C = (cij) ∈ Matk,`+m(R) such that cij = 0 for j < ν(i). Here ν(i)

denotes the column index of the pivot element in the ith row of C.

A5 For all j ∈ {1, . . . , `} such that there exists a i ∈ {1, . . . , k} with

ν(i) = j (i.e. for the column indices of the pivot elements),

append the polynomial

cijtj +
∑`

j′=j+1
cij′tj′ +

∑`+m
j′=`+1

cij′uj′

to the list G, where uj′ is the (j′ − `)th element of O.

A6 For all j = `, ` − 1, . . . , 1 such that the jth column of C contains

no pivot element, append the term tj as a new first element

to O and append the column eval(tj) as a new first column to M.
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A7 Using the SVD of M, calculate a matrix B whose column vectors

are an ONB of apker(M, ε).

A8 Repeat steps A4 – A7 until B is empty. Then continue with

step A2.

This algorithm returns the following results:

(a) The set O = {t1, . . . , tµ} contains an order ideal of terms which is

strongly linearly independent on X, i.e. such that there is no

unitary polynomial in 〈O〉K which vanishes ε-approximately on X.

(b) The set G is a δ-approximate O-border basis. (An explicit

bound for δ can be given.)
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Optimizations and Improvements of AVI

(1) better update strategies in Step A2 to keep the sizes of the SVD

computations manageable and to improve the strong linear

independence of the evaluation vectors of the computed order ideal

(2) final cleaning of the result to remove remaining almost linear

dependencies and to get as close to the border basis scheme as

possible

(3) recomputation of the approximate border basis using different

term orderings (dependencies of physical quantities) and

threshold numbers (inherent data uncertainty)
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5 – Modelling Oil Production

If an experiment works,

something has gone wrong.

(Finagle’s First Law)

Example 5.1 A certain two-zone oil well in Brunei yields 7200 data

points in R
8. We use 80% of the points for modelling the total

production in the following way:

(a) Using the AVI algorithm with ε = 0.05, compute an order ideal

O and its evaluation matrix eval(O).

(b) Find the vector in the linear span of the rows of eval(O) which is

closest to the total production.
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(c) The corresponding linear combination of terms in O is the

model polynomial for the total production.

(d) Plot all values of the model polynomial at the given points.

Compare them at the points which were not used for modelling with

the actual measured values.

Example 5.2 Using the same data points, ε = 0.1, and the same

procedure, model the total gas production.

Example 5.3 Using the same procedure, model a second oil well.

Find the optimal threshold number (i.e. the inherent variability in

the data).
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6 – Further Applications

A few months in the laboratory

can save a few hours in the library.

(Westheimer’s Law)

(1) Dynamic Modelling: Using the differential AVI algorithm,

construct model polynomials which also capture the dynamic

behavior of the system.

(2) Production-Exploration: Based on tomographic data, find

simple algebraic surfaces which approximate the gas/oil body;

deduce new production strategies.

(3) Geometric Exploration: Based on a novel interpretation of

seismic data, find oil/gas bodies of non-standard geometric shapes.
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If you want to know THE END,

look at the beginning.

(African Proverb)

Thank you for your attention!
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