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This talk is based on joint work with Hennie Poulisse (Shell Int.

Exploration & Production) and Lorenzo Robbiano (Università di

Genova).

An overview article

From Oil Fields to Hilbert Schemes

will appear in the proceedings of this conference.
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1 – Border Bases

It is difficult to get a man to understand something

when his salary depends upon his not understanding it.

(Upton Sinclair)

K field

P = K[x1, . . . , xn] polynomial ring over K

I ⊆ P zero-dimensional polynomial ideal (i.e. dimK(P/I) < ∞)

Tn = {xα1

1 · · ·xαn
n | αi ≥ 0} monoid of terms
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Definition of Border Bases

Definition 1.1 (a) A (finite) set O ⊂ Tn is called an order ideal if

t ∈ O and t′ | t implies t′ ∈ O.

(b) Let O be an order ideal. The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is

called the border of O.

(c) Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν} its

border. A set of polynomials {g1, . . . , gν} ⊂ I of the form

gj = bj −
µ∑

i=1

cijti

with cij ∈ K and ti ∈ O is called an O-border prebasis of I.

(d) An O-border prebasis of I is called an O-border basis of I if the

residue classes of the terms in O are a K-vector space basis of P/I.
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A Picture of an Order Ideal and its Border
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Example 1.2 Given a term ordering σ, the ideal I has a border

basis with respect to Oσ(I) = Tn \ LTσ(I), namely the one given by

G = {g1, . . . , gν} with

gj = bj − NFσ,I(gj)

Example 1.3 The ideal I = 〈x2 + xy + y2, x3, x2y, xy2, y3〉 in

R[x, y] has a border basis with respect to O = {1, x, y, x2, y2}. But

this order ideal is not of the form Oσ(I) because

LTσ(x2 + xy + y2) ∈ {x2, y2}.
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2 – Properties of Border Bases

The list of the theorems I knew

made limericks end at line two.

(Anonymous)

In the following, we use the following notation:

O = {t1, . . . , tµ} order ideal

∂O = {b1, . . . , bν} border of O
G = {g1, . . . , gν} is an O-border prebasis, where

gj = bj −
µ∑

i=1

cijti with cij ∈ K

I = 〈g1, . . . , gν〉 ideal generated by G
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Proposition 2.1 (Existence of Border Bases)

(a) The ideal I need not have an O-border basis. But if it does, the

O-border basis of I is uniquely determined.

(b) If O is of the form Tn \ LTσ(I) for some term ordering σ, then I

has an O-border basis. It contains the reduced σ-Gröbner basis of I.

Proposition 2.2 There exists a Division Algorithm for border

prebases.

Proposition 2.3 The rewriting system defined by the rules

bj −→
µ∑

i=1

cijti is confluent. (But it is in general not terminating,

i.e. not Noetherian.)

9



Characterization Using Multiplication Matrices

For r ∈ {1, . . . , n}, we define the r-th formal multiplication

matrix Ar as follows:

Multiply ti ∈ O by xr. If xrti = bj is in the border of O, rewrite it

using the prebasis polynomial gj = bj −
∑µ

k=1 ckjtk and put

(c1j, . . . , cµj) into the i-th column of Ar. But if xrti = tj then put

the j-th unit vector into the i-th column of Ar.

Theorem 2.4 (Mourrain)

The set G is the O-border basis of I if and only if the formal

multiplication matrices commute, i.e. iff

Ai Aj = Aj Ai for 1 ≤ i < j ≤ n.
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3 – Neighbors

Under capitalism, man exploits man.

Under communism, it’s just the opposite.

(John Kenneth Galbraith)

Definition 3.1 Let bi, bj ∈ ∂O be two distinct border terms.

(a) The border terms bi and bj are called next-door neighbors if

bi = xk bj for some k ∈ {1, . . . , n}.
(b) The border terms bi and bj are called across-the-street

neighbors if xk bi = x` bj for some k, ` ∈ {1, . . . , n}.
(c) The border terms bi and bj are called neighbors if they are

next-door neighbors or across-the-street neighbors.

(d) The graph whose vertices are the border terms and whose edges

are given by the neighbor relation is called the border web of O.
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Example 3.2 The border of O = {1, x, y, xy} is

∂O = {x2, x2y, xy2, y2}. Here the border web looks as follows:

(x2, x2y) and (y2, xy2) are next-door neighbor pairs

(x2y, xy2) is an across-the-street neighbor pair.
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Proposition 3.3 The border web is connected.
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Neighbor Syzygies

Definition 3.4 (a) For t, t′ ∈ Tn, we call the pair

(lcm(t, t′)/t,− lcm(t, t′)/t′) the fundamental syzygy of (t, t′).

(b) The fundamental syzygies of neighboring border terms are also

called the neighbor syzygies.

Proposition 3.5 (a) Given a tuple of terms (t1, . . . , tr), the

fundamental syzygies σij = (lcm(ti, tj)/ti) ei − (lcm(ti, tj)/tj) ej such

that 1 ≤ i < j ≤ r generate the syzygy module

SyzP (t1, . . . , tr) = {(f1, . . . , fr) ∈ P r | f1t1 + · · · + frtr = 0}.

(b) The neighbor syzygies generate the module of border syzygies

SyzP (b1, . . . , bν).
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Example 3.6 Let us compute the border syzygies for the order ideal

O = {1, x, y, xy}. We have ∂O = {b1, b2, b3, b4} with

b1 = x2, b2 = x2y, b3 = xy2, b4 = y2

and the neighbor pairs (b1, b2), (b2, b3), (b3, b4).

Therefore the border syzygy module SyzP (b1, b2, b3, b4) is generated

by the following three neighbor syzygies:

e2 − y e1 = (−y, 1, 0, 0)

y e2 − x e3 = (0, y, −x, 0)

e4 − x e3 = (0, 0, −x, 1)
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4 – Syzygies of Border Bases

Given a choice between two theories,

take the one which is funnier.

(Anonymous)

Goal: Find border basis analogues of Buchberger’s Criterion and

Schreyer’s Theorem!

Given an O-border prebasis G = {g1, . . . , gν} as above, we want to

define the notion of lifting syzygies for them.

Definition 4.1 Let gi, gj ∈ G be two distinct border prebasis

polynomials. Then the polynomial

Sij = (lcm(bi, bj)/bi) · gi − (lcm(bi, bj)/bj) · gj

is called the S-polynomial of gi and gj .

15



Remark 4.2 Let gi, gj ∈ G.

(a) If (bi, bj) are next-door neighbors with bj = xk bi then Sij is of

the form Sij = gj − xk gi.

(b) If (bi, bj) are across-the-street neighbors with xk bi = x` bj then

Sij is of the form Sij = xk gi − x` gj .

In both cases we see that the support of Sij is contained in O ∪ ∂O.

Hence there exists constants ai ∈ K such that the support of

NRO,G(Sij) = Sij −
µ∑

m=1

am gm ∈ I

is contained in O. If G is a border basis, this implies

NRO,G(Sij) = 0.

We shall say that the syzygy ej − xk ei −
∑µ

m=1 amem resp.

xk ei − x` ej −
∑µ

m=1 amem is a lifting of the neighbor syzygy

ej − xk ei resp. xk ei − x` ej .
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Border Basis Version of Buchberger’s Criterion

Theorem 4.3 (Stetter)

An O-border prebasis G is an O-border basis if and only if the

neighbor syzygies lift, i.e. if and only if we have

NRO,G(Sij) = 0

for all (i, j) such that (bi, bj) is a pair of neighbors.

Idea of the proof: The vanishing conditions for the normal

remainders of the S-polynomials entail certain equalities which have

to be satisfied by the coefficients cij of the border prebasis

polynomials. Using a (rather nasty) case-by-case argument, one

checks that these are the same equalities that one gets from the

conditions that the formal multiplication matrices have to commute.
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Example 4.4 Let us look at these conditions for O = {1, x, y, xy}.
An O-border prebasis G = {g1, g2, g3, g4} is of the form

g1 = x2 − c11 · 1 − c21 x − c31 y − c41 xy

g2 = x2y − c12 · 1 − c22 x − c32 y − c42 xy

g3 = xy2 − c13 · 1 − c23 x − c33 y − c43 xy

g4 = y2 − c14 · 1 − c24 x − c34 y − c44 xy

The S-polynomials of its neighbor syzygies are

S21 = g2 − yg1

= −c12 − c22x + (c11 − c32)y + (c21 − c42)xy + c31y
2 + c41xy2

S23 = yg2 − xg3

= c13x − c22y + (c33−c22)xy + c23x
2 + c43x

2y − c42xy2 − c32y
2
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S34 = g3 − xg4

= −c13 + (c14 − c23)x − c33y + (c34 − c43)xy + c24x
2 + c44x

2y

Their normal remainders with respect to G are

NRO,G(S21) = (−c12 + c31c14 + c41c13) + (−c22 + c31c24 + c41c23)x

+(c11 − c32 + c31c34 + c41c33)y + (c21 − c42 + c31c44 + c41c43)xy

NRO,G(S23) = (c11c23 + c12c43 − c42c13 − c32c14) + (c21c23 + c22c43

−c42c23 − c32c24 + c13)x + (−c12 + c31c23 + c32c43 − c42c33 − c32c34)y

+(c33 − c22 + c41c23 − c32c44)xy

NRO,G(S34) = (−c13 + c11c24 + c12c44) + (c14−c23 + c21c24 + c23c44)x

+(−c33 + c31c24 + c32c44)y + (c34 − c43 + c41c24 + c42c44)xy

Here G is a border basis if and only if these 12 coefficients are zero.

19



Border Basis Version of Schreyer’s Theorem

Theorem 4.5 (Huibregdse)

Let G be an O-border basis. For every pair (i, j) such that (bi, bj) is a

neighbor pair, let sij = ej − xk ei −
∑µ

m=1 amem resp.

sij = xk ei − x` ej −
∑µ

m=1 amem be the lifting of the corresponding

neighbor syzygy.

Then the set {sij | (bi, bj) neighbors} generates the syzygy module

SyzP (g1, . . . , gν) of the border basis.

Idea of the proof: One has to take an arbitrary syzygy of

(g1, . . . , gν) and represent it as a linear combination of the

syzygies sij . Unfortunately, in order to reduce the “largest” terms in

the syzygy, one may have to introduce even larger terms. A careful

analysis of the different cases is necessary to keep the situation under

control and make the reduction procedure finite.
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Example 4.6 (The Corners of the Unit Square)

Let us have a look the example X = {(±1,±1)}. We have

O = {1, x, y, xy} and I(X) = 〈g1, g2, g3, g4〉 with

g1 = x2 − 1, g2 = x2y − 1, g3 = xy2 − 1, g4 = y2 − 1

The neighbor syzygies are e2 − ye1 and ye2 − xe3 and e3 − xe4.

The computation of the normal remainders Sij −→ NRO,G(Sij)

shows that the liftings of the neighbor syzygies are

s21 = e2 − ye1

s23 = ye2 − xe3

s34 = e3 − xe4

Hence SyzP (g1, g2, g3, g4) is generated by the three tuples

(−y, 1, 0, 0), (0, y,−x, 0) and (0, 0, 1,−x).
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The Border Basis Scheme

Idea: Use the Commuting Multiplication Matrices / Buchberger

Criterion to parametrize O-border bases. Given an O-border prebasis

G = {g1, . . . , gν} with

gj = bj −
µ∑

i=1

cijti

consider the cij as indeterminates. Let IO be the ideal in K[cij ]

generated by the entries of all AiAj −AjAi.

The affine subscheme BO of Kµν defined by IO is called the

O-border basis scheme. Its points correspond 1-1 to the ideals

having an O-border basis.

22



Properties of the Border Basis Scheme

• The scheme BO corresponds to an open subset of the Hilbert

scheme Hilbs(An).

• The scheme BO comes equipped with a universal flat family

whose fibers correspond to the rings P/〈G〉 where G is an O-border

basis.

• A rational curve C ⊆ BO which connects the point corresponding

to a given ideal I = 〈G〉 to the point corresponding to the border

term ideal 〈b1, . . . , bν〉 is nothing but a flat deformation from P/I

to P/〈b1, . . . , bν〉.

23



5 – Approximate Border Bases

Question to Radio Eriwan:

Is it true that there are polynomials

in the approximate vanishing ideal

which do not vanish approximately?

Radio Eriwan answers:

In principle yes. Approximately.

Motivation: Suppose we are given some points X = {p1, . . . , ps}
in Rn. When does a polynomial vanish approximately at X?

Let ε > 0 be a given threshold number. We say

that f ∈ P = R[x1, . . . , xn] vanishes ε-approximately at X if

|f(pi)| < ε for i = 1, . . . , s.
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Problem 1: The polynomials which vanish ε-approximately at X do

not form an ideal!

Problem 2: All polynomials with very small coefficients vanish

ε-approximately at X!

Therefore we need to measure the size of a polynomial. In other

words, we need a topology on R[x1, . . . , xn].

Definition 5.1 Let f = a1t1 + · · · + asts ∈ P , where

a1, . . . , as ∈ R \ {0} and t1, . . . , ts ∈ Tn. Then the number

‖f‖ = ‖(a1, . . . , as)‖ is called the (Euclidean) norm of f .

Clearly, this definition turns P into a normed vector space. Now it is

reasonable to consider the condition that polynomials f ∈ P with

‖f‖ = 1 vanish ε-approximately at X.
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Based on these preliminary considerations, we define approximate

border bases as follows.

Definition 5.2 Let O = {t1, . . . , tµ} be an order ideal, let

∂O = {b1, . . . , bν}, and let ε > 0.

A set of polynomials G = {g1, . . . , gν} is called an ε-approximate

O-border basis if the following conditions are satisfied:

1. For j = 1, . . . , ν, we have ‖gj‖ = 1.

2. If aj denotes the coefficient of bj in gj then |aj | > ε and

{ 1
aj

g1, . . . ,
1

aν
gν} is an O-border prebasis.

3. For all pairs (i, j) such that (bi, bj) are neighbors, we have

‖NRO,G(Sij)‖ < ε.
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Remark 5.3 If G = {g1, . . . , gν} is an ε-approximate border basis

then the point (c11, . . . , cµν) in Rµν given by its coefficients is close

to the border basis scheme.

Example 5.4 Let O = {1, x, y, xy}. Then the set

g1 = x2 + 0.02xy − 0.01y − 1.01 g2 = x2y + 0.03x − 0.98 y

g3 = xy2 − 1.02 x g4 = y2 − 0.99

is an approximate O-border basis. The ideal I = 〈g1, g2, g3, g4〉 is the

unit ideal, since g3 − x g4 = 0.03x shows −g1 ≡ 0.01y + 1.01 and

g4 ≡ 1012 − 0.99(mod I).
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6 – The AVI Algorithm

A good algorithm is

10% inspiration, 15% perspiration,

and 75% desperation.

(Anonymous)

Goal: Given a set of (empirical) points X = {p1, . . . , ps} in Rn and

ε > 0, find an order ideal O and an approximate O-border basis G

such that the polynomials in G vanish ε-approximately at the points

of X.

Notice that, in general,

• we have #O << #X,

• the ideal 〈G〉 is the unit ideal.
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Theorem 6.1 (The Singular Value Decomposition)

Let A ∈ Matm,n(R).

1. There are orthogonal matrices U ∈ Matm,m(R) and

V ∈ Matn,n(R) and a matrix S ∈ Matm,n(R) of the form

S =


D 0

0 0


 such that

A = U · S · Vtr = U ·


D 0

0 0


 · Vtr

where D = diag(s1, . . . , sr) is a diagonal matrix.

2. In this decomposition, it is possible to achieve

s1 ≥ s2 ≥ · · · ≥ sr > 0. The numbers s1, . . . , sr depend only on A
and are called the singular values of A.
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3. The number r is the rank of A.

4. The matrices U and V have the following interpretation:

first r columns of U ≡ ONB of the column space of A
last m − r columns of U ≡ ONB of the kernel of Atr

first r columns of V ≡ ONB of the row space of A
≡ ONB of the column space of Atr

last n − r columns of V ≡ ONB of the kernel of A
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Corollary 6.2 Let A ∈ Matm,n(R), and let ε > 0 be given. Let

k ∈ {1, . . . , r} be chosen such that sk > ε ≥ sk+1. Form the matrix

Ã = U S̃ Vtr by setting sk+1 = · · · = sr = 0 in S. The matrix Ã is

called the singular value truncation of A.

1. We have min{‖A − B‖ : rank(B) ≤ k} = ‖A − Ã‖ = sk+1. (Here

‖ · · · ‖ denotes the 2-operator norm of a matrix.)

2. The vector subspace apker(A, ε) = ker(Ã) is the largest

dimensional kernel of a matrix whose Euclidean distance from A
is at most ε. It is called the ε-approximate kernel of A.

3. The last n − k columns vk+1, . . . , vn of V are an ONB

of apker(A, ε). They satisfy ‖Avi‖ < ε.
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The Stabilized RREF

Given a basis B = {f1, . . . , fr} of a vector space V of polynomials

and a term ordering σ, we want to find LTσ,ap(V ). We accept only

leading terms of unitary polynomials whose leading coefficient is

larger than a given threshold τ > 0.

The first step is to transform this to a matrix problem:

Let S = Supp(f1) ∪ · · · ∪ Supp(fr) and write S = {t1, . . . , ts} where

the terms ti ∈ Tn are ordered such that t1 ≥σ t2 ≥σ · · · ≥σ ts.

Clearly, we have Supp(V ) ⊆ S. For i = 1, . . . , r, we write

fi = ci1t1 + · · · + cists with cij ∈ R

Then the matrix Mσ,B = (cij) ∈ Matr,s(R) is called the coefficient

matrix of V with respect to σ and B.
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Proposition 6.3 (Stabilized Reduced Row Echelon Form)

Let A ∈ Matm,n(R) and τ > 0 be given. Let a1, . . . , an be the columns

of A. Consider the following instructions.

(1) Let λ1 = ‖a1‖. If λ1 < τ , let R = (0, . . . , 0) ∈ Matm,1(R).

Otherwise, let Q = ((1/λ1) a1) ∈ Matm,1(R) and

R = (λ1, 0, . . . , 0) ∈ Matm,1(R).

(2) For i = 2, . . . , n, compute qi = ai −
∑i−1

j=1〈ai, qj〉 qj and λi = ‖qi‖.
If λi < τ , append a zero column to R. Otherwise, append the

column (1/λi) qi to Q and the column

(λi〈a1, q1〉, . . . , λi〈ai−1, qi−1〉, λi, 0, . . . , 0) to R.

(3) Starting with the last row and working upwards, use the first

non-zero entry of each row of R to clean out the non-zero entries

above it.
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(4) For i = 1, . . . , m, compute the norm %i of the i-th row of R. If

%i < τ , set this row to zero. Otherwise, divide this row by %i.

Then return the matrix R.

This is an algorithm which computes a matrix R in reduced row

echelon form. The row space of R is contained in the row space of the

matrix A which is obtained from A by setting columns whose norm is

less than τ to zero. Here the pivot elements of R are not 1, but its

rows are unitary vectors.

Furthermore, if the rows of A are unitary and mutually orthogonal,

the row vectors of R differ by less than τ m
√

n from unitary vectors

in the row space of A.
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Theorem 6.4 (The AVI Algorithm)

The following algorithm computes an approximate border basis of an

approximate vanishing ideal of a finite set of points X ⊆ [−1,1]n.

A1 Start with lists G = ∅, O = [1], a matrix

M = (1, . . . , 1)tr ∈ Mats,1(R), and d = 0.

A2 Increase d by one and let L be the list of all terms of degree d

in ∂O, ordered decreasingly w.r.t. σ. If L = ∅, return the pair

(G,O) and stop. Otherwise, let L = (t1, . . . , t`).

A3 Let m be the number of columns of M. Form the matrix

A = (eval(t1), . . . , eval(t`),M) ∈ Mats,`+m(R).

Using its SVD, calculate a matrix B whose column vectors are

an ONB of the approximate kernel apker(A, ε).
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A4 Compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix

C = (cij) ∈ Matk,`+m(R) such that cij = 0 for j < ν(i). Here ν(i)

denotes the column index of the pivot element in the ith row of C.

A5 For all j ∈ {1, . . . , `} such that there exists a i ∈ {1, . . . , k} with

ν(i) = j (i.e. for the column indices of the pivot elements),

append the polynomial

cijtj +
∑`

j′=j+1cij′tj′ +
∑`+m

j′=`+1cij′uj′

to the list G, where uj′ is the (j′ − `)th element of O.

A6 For all j = `, ` − 1, . . . , 1 such that the jth column of C contains

no pivot element, append the term tj as a new first element to O
and append the column eval(tj) as a new first column to M.
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A7 Using the SVD of M, calculate a matrix B whose column vectors

are an ONB of apker(M, ε).

A8 Repeat steps A4 – A7 until B is empty. Then continue with

step A2.

The resulting set O = {t1, . . . , tµ} contains an order ideal of terms

such that there is no unitary polynomial in 〈O〉K which vanishes

ε-approximately on X.

The resulting set G is a δ-approximate O-border basis. (An explicit

bound for δ can be given.)

The AVI algorithm has been implemented in the ApCoCoA library

(see http://www.apcocoa.org)
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Let us compute some examples with the AVI algorithm.

Example 6.5 (Four Almost Aligned Points)

Let X = {(0, 0.01), (0.34, 0.32), (0.65, 0.68), (0.99, 1)}, and let

ε = 0.05. When we apply the AVI algorithm to this case, we get

O = {1, y, y2} and the approximate border basis

G = {0.71x − 0.70y, 0.70xy − 0.71y2 + 0.02y, 0.51xy2 − 0.80y2 +

0.31y − 0.01, 0.51y3 − 0.80y2 + 0.30y − 0.01}.
At first glance, it may be surprising that O corresponds to only three

points. Which points are these? In the next section, we shall show

that they are X′ = {(0.03, 0.04), (0.52, 0.52), (0.97, 0.98)}.
What has happened is that AVI found a curve of degree 3 passing

close to X, namely g4 = 0.51y3 − 0.80y2 + 0.30y − 0.01.
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Now let us look at the Example presented by C. Fassino where the

SOI and NBM algorithms find no stable border basis.

Example 6.6 (Five Points on Two Conics and a Cubic)

Let X = {(0, 1), (0.2, 0.4), (0.28, 0.28), (0.4, 0.2), (1, 0)}.
(a) When we choose ε = 0.1, we get O = {1, x, y} and the (unitary)

approximate border basis G = 0.52x2 − 0.77x− 0.25y +0.25, 0.94xy +

0.18x + 0.18y − 0.18, 0.51y2 − 0.26x − 0.77y + 0.26}. The set G

approximately defines X′ = {(0, 0.98), (0.28, 0.29), (0.98, 0)}.
(b) The choice ε = 0.01 leads to O′ = {1, x, y, y2} and G′ =

{0.3x2+0.3y2−0.6x−0.6y+0.3, 0.94xy+0.18x+0.18y−0.18, 0.95xy2+

0.19y2 − 0.03x− 0.22y + 0.03, 0.42y3 − 0.77y2 + 0.10x + 0.44y − 0.10}.
The set G′ approximately defines the four points

X′′ = {(0, 0.99), (0.21, 0.37), (0.37, 0.21), (0.99, 0)}. Thus even this

small choice of ε leads to a decrease in the codimension of I(X).
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Finally we consider an industrial application of the AVI algorithm.

Example 6.7 Suppose that X consists of 6000 points in R5. The

relative errors in the coordinates of the points of X are about 10%. It

is reasonable to use the AVI algorithm with ε = 0.1.

The result (after ca. 0.5s CPU time on my laptop) is the order ideal

O = {1, x[5], x[4], x[3], x[2], x[1], x[5]2, x[4]x[5], x[3]x[5], x[2]x[5],

x[1]x[5], x[4]2, x[3]x[4], x[2]x[4], x[1]x[4], x[3]2, x[2]x[3], x[5]3, x[4]x[5]2,

x[3]x[5]2} consisting of only 20 terms. The approximate border

basis G has 43 elements.

It is not true that there are 20 real points such that G is an

approximate border basis of their vanishing ideal.

One can only say that the 20-dimensional space 〈O〉R suffices to

interpolate approximately at the given 6000 points.
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7 – Rational Recovery

I’m an excellent housekeeper.

Every time I get a divorce,

I keep the house.

(Zsa Zsa Gabor)

In this last part we want to address the following

Rational Recovery Problem: Given an approximate border basis,

find an exact border basis, defined over Q, which is “close-by” in the

sense that its coefficients differ very little from the approximate

border basis.
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Proposition 7.1 (Properties of Multiplication Matrices)

Let X ⊂ Rn be a finite point set, and let O be an order ideal such that

there exists an O-border basis of I(X).

(a) The eigenvalues of the i-th multiplication matrix Mxi
w.r.t. O

are the i-th coordinates of the points of X.

(b) Let O = {1, x1, . . . , xn, tn+2, . . . , tµ}. Then the joint eigenvectors

of M tr
x1

, . . . , M tr
xn

are of the form vi = (1, pi1, . . . , pin, . . . ) where the

points (pi1, . . . , pin) are the points of X.
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O = {t1, . . . , tµ} order ideal

∂O = {b1, . . . , bν} border of O
G = {g1, . . . , gν} an ε-approximate O-border basis

The formal multiplication matrices Mx1
, . . . , Mxn

associated to G are

also called the approximate multiplication matrices.

Remark 7.2 The approximate multiplication matrices commute

approximately, i.e. the entries of their commutators are smaller

than ε.

Question: How can we find “approximate” joint eigenvectors of

M tr
x1

, . . . , M tr
xn

?
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The Rational Recovery Algorithm

In the above setting we proceed as follows:

(1) Form a generic linear combination M` = `1 Mx1
+ · · ·+ `n Mxn

of

Mx1
, . . . , Mxn

.

Then M` is the matrix of the multiplication by the generic linear

form ` = `1x1 + · · · + `nxn. The eigenvalues of M` are “as separated

as possible”.

(2) Compute Q-rational points p1, . . . , pµ by finding the eigenvectors

of M tr
` , writing vi = (1, p̃i1, . . . , p̃in, . . . ), and considering the floating

point numbers p̃ij as rationals.

(3) Calculate the exact O-border basis of the vanishing ideal of

X′ = {p1, . . . , pµ} over Q[x1, . . . , xn].
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Some examples for rational recovery were already mentioned above.

Let us go carefully through one more.

Example 7.3 (The Corners of the Unit Square)

Let X = {(0.02, 0.01), (0.99, 0.01), (1.01, 0.98), (0.02, 0.99)} be the

slightly perturbed corners of the unit square.

We apply the AVI algorithm with ε = 0.05 and get the order ideal

O = {1, x, y, xy} and the approximate (unitary) O-border basis

G = {g1, g2, g3, g4} with

g1 = 0.70x2 − 0.01xy − 0.71x + 0.01

g2 = 0.70y2 − 0.70y

g3 = 0.69x2y − 0.71xy + 0.01y

g4 = 0.71xy2 − 0.70xy
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Therefore the multiplication matrices are

Mx =




0 −0.01 0 0

1 1 0 0

0 0 0 −0.02

0 0.02 1 1.03




and My =




0 0 0 0

0 0 0 0

1 0 1 0

0 1 0 0.98




Both matrices have two eigenvalues very close to 0 and two

eigenvalues very close to 1. If we try to compute the joint

eigenvectors of M tr
x and M tr

y , we get numerically unstable results.

Therefore we form a “random” linear combination

M` = 0.3Mx + 0.5Mx and compute the eigenvectors of M tr
` . The

result is v1 = (1, 0.01, 0, 0), v2 = (1, 0.99, 0, 0),

v3 = (1, 0.02, 0.99, 0.01), v4 = (1, 0.99, 0.98, 0.97).
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This yields the exact points

X′ = {(0.01, 0), (0.99, 0), (0.02, 0.99), (0.99, 0.98)} which are in good

agreement with the input points.

Finally, the exact O-border basis of X′ is G′ = {g′1, g′2, g′3, g′4} where

g′1 = x2 − 1/99xy − x + 1/100y + 99/10000

g′2 = y2 + 1/97xy − 1921/1940y

g′3 = x2y − 101/100xy + 99/5000y

g′4 = xy2 − 2376/2425xy − 99/485000y

It is easy to check that this is again in good agreement with G.
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In THE END,

everything is a gag.

(Charlie Chaplin)

Thank you for your attention!
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