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This talk is based on joint work with

Hennie Poulisse

(Shell Int. Exploration & Production)

Hennie.Poulisse@shell.com

Your theory is crazy,

but it’s not crazy enough to be true.

(Niels Bohr)
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1 – Modeling Oil Production

You’ve got to be very careful

if you don’t know where you are going,

because you might not get there.

(Yogi Berra)

The Algebraic Oil Research Project is a collaboration between

the Department of Exploratory Research at Shell

International Exploration and Production (SIEP) and the

chair of Symbolic Computation at Passau University.

The basic idea is to introduce methods of symbolic computation

(computer algebra) to solve some problems in oil production and

exploration.
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These new techniques are part of an emerging area called

Approximate Commutative Algebra or hybrid computation

or symbolic-numeric computation.
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Problem 1: Find simple polynomial models which describe the

behaviour of an oil production system over extended periods of time.

Structure of an Oil Well
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Schematic Representation of an Oil Well
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Basic Tenet 1: Use only the available data!

x1 : ∆Pinflow
1

x2 : ∆Pinflow
2

x3 : Gas production

x4 : ∆Ptub

x5 : ∆Ptransport

Basic Tenet 2: Assume that no a priori model is available to

describe the production of the well in terms of measurable physical

quantities.

Problem 2: Find an algebraic model of the production in terms of

these quantities which specifically models the interactions occurring

in this production unit.
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Why Polynomials?

(1) Many important physical laws are given by polynomials.

(2) In order to achieve a high predictive power of a model one has

to use a rigid set of functions.

(3) But at the same time we prefer to impose no model structure,

i.e. we do not want to make detailed assumptions about the support

of the model polynomials.

(4) Many functions can be approximated well by polynomials.

(5) The coefficients of simple model polynomials have physical

interpretations. We can get quantitative predictions!
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2 – Approximative Commutative Algebra

All those who believe in telekinesis,

raise my hand.

(Steven Wright)

P = R[x1, . . . , xn] polynomial ring over the field of real numbers R

X = {p1, . . . , ps} ⊂ Rn finite set of (empirical) points

Definition 2.1 Given a threshold number ε > 0, we say that a

polynomial f ∈ P vanishes ε-approximately at a point p ∈ Rn if

‖f(p)‖ < ε.

Problem: Every polynomial with small coefficients vanishes

ε-approximately at p!
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Definition 2.2 (a) For every f ∈ P , we let ‖f‖ be the (euclidean)

norm of the coefficient vector of f .

(b) A polynomial is called unitary if ‖f‖ = 1.

Thus we are looking for unitary polynomials which vanish

ε-approximately at the points of X.

Problem: If one adds such a polynomial to a model, one obtains

again a model.

Definition 2.3 (a) A polynomial of the form xα1

1
· · ·xαn

n with

αi ≥ 0 is called a term.

(b) A finite set of terms O is called an order ideal if t ∈ O and t′ | t

implies t′ ∈ O.

(c) The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is called the border of O.
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Plan: (a) Use an interpolation space whose basis consists of the

terms of an order ideal.

(b) The interpolation space should be a residue class ring of P

modulo an approximate vanishing ideal, i.e. an ideal generated

by unitary polynomials vanishing approxiamtely on X.

Definition 2.4 Let O = {t1, . . . , tµ} be an order ideal and

∂O = {b1, . . . , bν} its border.

(a) A set of polynomials {g1, . . . , gν} of the form gj = bj −
µ∑

i=1

cijti

with cij ∈ K and ti ∈ O is called an O-border prebasis.

(b) An O-border prebasis is called an O-border basis if the residue

classes of the terms in O are a K-vector space basis of P/〈g1, . . . , gν〉.
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The AVI Algorithm

There is an algorithm which takes as input a set of (empirical) points

X ⊂ [−1, 1]n and computes an order ideal O and an approximate

O-border basis G = {g1, . . . , gν} which vanishes ε-approximately

at X.

Here G is called an approximate O-border basis if it is an O-border

prebasis and if the coefficients cij almost satify the equations

required for G to be a border basis.

Basic Tenet 3: Do not linearize unnecessarily!

Use the power of polynomial algebra, not just linear

algebra!
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Why Ideals?

(1) Almost vanishing polynomials have naturally the structure of a

polynomial ideal: The sum of two almost vanishing unitary

polynomials is almost vanishing. If you multiply an almost vanishing

polynomial by an arbitrary unitary polynomial, the result is almost

vanishing.

(2) The residue classes modulo a polynomial ideal have naturally the

structure of a ring, i.e. you can add and multiply residue classes.

(3) Starting from a polynomial ideal one can compute higher (more

subtle) algebraic invariants which contain deeper structural insights

into the physical system.
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Does It Work?

Example 2.5 Let us take 2052 data points in R6 relating to the

driving forces of Zone A of a certain two-zone well, labelled as above

but with an additional indeterminate for inflow valve A.

(a) First we use 1026 of the points and the AVI algorithm with

ε = 0.2 to get the order ideal O = {1, x6, x5, x4, x3, x1, x
2

6
, x1x6, x

2

5
}

and an approximate O-border basis.

Then we use a linear projection to write the total fluid production

approximately as a linear combination in 〈O〉K and get

−1.69x2

5
− 0.26 x1x6 − 1.01 x3 − 0.11 x4 + 1.86 x5 − 0.38 x6 + 0.58

The average evaluation of the polynomial at the points used for the

fitting experiment is 0.07.
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Production Modeling Example 1

16



(b) Similarly, we model 1171 data points for Zone B when it is on

test (i.e. producing alone) and get O = {1, x6, x5, x4, x1, x
2

6
} with

production polynomial

0.04 x2

6
+ 0.13 x1 + 0.62 x4 + 0.46 x5 + 0.13 x6 − 0.23 and average

evaluation error 0.06.
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Production Modeling Example 2
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3 – Production Allocation

I really didn’t say everything I said.

Half the lies they tell about me aren’t true.

(Yogi Berra)

Problem: Several zones of a well are producing together

(commingled production). Some of them are influencing each

other. Typical interactions are:

(1) The oil produced by one zone may push back the oil trying to

flow in at another zone.

(2) The gas which is produced simultaneously with the oil may have

stimulating or inhibiting effects (liquid-gas relationship).

(3) Zones may or may not be connected inside the reservoir;

preferential paths may exist.
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Tasks: (1) Determine and quantify these interactions!

(2) Construct production models which take these interactions into

account and correctly allocate the production to the different inflow

valves.

(3) Derive long-term production forecasts and suitable production

strategies. Improve the Ultimate Recovery!

Hypothesis: Assume that suitable production polynomials pA, pB,

and pAB have been constructed.

20



Subideal Border Bases

Definition 3.1 Suppose we are given a set of polynomials

F = {f1, . . . , fm} ⊂ P and order ideals O1, . . . ,Om.

(a) The set O = O1f1 + · · · + Omfm is called an F -order ideal.

(b) The set ∂OF = (x1OF ∪ · · · ∪ xnOF ) \ OF is the border of OF .

(c) Let ∂OF = {b1fβ1
, . . . , bνfβν

}. An OF -subideal border

prebasis is a set G = {g1, . . . , gν} such that

gj = bjfβj
−

µ∑
i=1

cijtifαi

(d) An OF -subideal border prebasis is called an OF -subideal

border basis if the elements of OF are a R-basis of J/(〈G〉 ∩ J) for

J = 〈F 〉.
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The Subideal Version of the AVI-Algorithm

Let X ⊂ [−1, 1]n be a finite set of points, let ε > 0 be a given

threshold number, and let F = {f1, . . . , fm} be a set of non-zero

unitary polynomials.

Then there exists an algorithm which computes an F -order ideal OF

and an ε-approximate OF -subideal border basis G which

vanishes ε-approximately at X.
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Solution of the Production Allocation Problem

Let us define the contributions cA and cB to be the part of the

total production passing through the corresponding down-hole valve.

Let xA, xB represent the valve positions. Here xi = 0 means that the

valve is closed and xi = 1 corresponds to a fully opened valve.

If valve A is closed, i.e. for points in Z(xA), there is no contribution

from zone A. By Hilbert’s Nullstellensatz, this means pA ∈ 〈xA〉

and similarly pB ∈ 〈xB〉.

To model pAB, we write pAB = pA + pB + qAB where qAB is a

polynomial which measures the interaction of the two zones.
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To compute qAB, we write qAB = fA · (xB pA) + fB · (xA pB) and

note that this can be computed via the subideal version of the

AVI-algorithm.

The result is pAB = pA + pB + fAxBpA + fBxApB and satisfies

xA = 0 ⇒ pAB = pB as well as xB = 0 ⇒ pAB = pA.

The contributions of the two zone are then given by

cA = (1 + fAxB)pA and cB = (1 + fBxA)pB.

At the same time we gain a detailed insight into the nature of the

interactions by examining the structure of the polynomials fA, fB.
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4 – The Liquid-Gas Relationship

I went on a diet,

swore off drinking and heavy eating,

and in fourteen days, I lost two weeks.

(Joe E. Lewis)

Goal: In a well, compute model polynomials pL and pG for the

liquid and the gas production. Then find simple relations

f1 · pL + f2 · pG = g

where the remainder g should be a small polynomial. Interpret

f1, f2, g physically.

Mathematical Formulation: Find a pair (f1, f2) which is an

approximate syzygy of (pL, pG).
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Rational Approximation of Border Bases

Goal: Given an approximate border basis G, find a nearby exact

border basis G̃, i.e. an exact border basis in Q[x1, . . . , xn] such that

G − G̃ consists of small polynomials.

Algorithm 1: Form the approximate multiplication matrices

corresponding to G, compute their (approximate) solutions, and

recompute the exact vanishing ideal of those solution points.

Algorithm 2: From the approximate multiplication matrices,

compute a family of commuting matrices approximating it. Then

read off the exact border basis.
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Example 4.1 (Zone A)

Let us model Zone A of a certain two-zone well using the AVI

algorithm. We use only the driving quantities

x[1] : xA(valve opening)

x[2] : ∆Pdownstream

x[3] : ∆Pchoke

x[4] : ∆Ptransport tubing

x[5] : ∆Pinflow A

After normalization to [0, 1], the fluid production QA and the gas

production GA are approximated (using ε = 0.25, mean evaluation

error 0.12) by the following polynomials:
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pQA ≈ −0.55x1x4 + 1.64x4x5 − 0.03x1 − 1.19x3 − 0.98x4

+1.08 (x5 − 1)2 + 0.62

pGA ≈ 0.01x1x4 + 0.84x4x5 − 0.01x1 − 0.44x3 − 0.54x4

+0.46 (x5 − 1)2 + 0.37

As we can see, we have pQA − 2.33 pGA ≈ h(x1, . . . , x5) with a

“small” polynomial h that is essentially inversely correlated to x4,

the transport tubing pressure difference.

This results suggests the following interpretation: Fluid and gas

production in Zone A are essentially proportional. However, at

increasing production rates the large gas volume in the

production tubing reduces the fluid production.
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Example 4.2 (Zone B)

Now let us apply this procedure to Zone B of the same well. For x5

we use the pressure difference between the annulus of zone B and the

tubing pressure at zone A, i.e. the sum of ∆P production tubing BA

and ∆Pinflow B. We find

pQB ≈ 0.08x1 + 2.97x4 + 0.34x5 − 2.13

pGB ≈ −0.16x1 + 3.13x4 + 0.28x5 − 2.15

where the constant clearly corresponds to the shifting of x4 we have

performed. (The initial range was 13900 – 18600.) In both

computations we used ε = 0.25 again. The mean evaluation error is

0.07 in each case.
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The interpretation of this result is that QB and GB are essentially

proportional. Since pQB − pGB ≈ 0.25 x1 − 0.15x4, we see that

opening valve B favors fluid production and the inhibiting

effect of larger gas volumes in the production tubing is not as

significant as for zone A.

Remark 4.3 (General Liquid-Gas Relationship)

(a) Model the zone/well using all driving forces, the liquid and the

gas production. Let G̃ be the computed approximate border basis.

(b) Using Rational Approximation, find an exact border basis G

near G̃.

(c) Compute a subideal border basis H for the driving forces of the

zone/well which is contained in the ideal 〈G〉.

(d) The residue class ideal generated by G in P/〈H〉 is the set of

liquid-gas relationships. Interpret its generators.
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5 – Further Applications of the AVI Algorithm

It’s kind of fun to do the impossible.

(Walt Disney)

(1)(Exploration) Direct computation of algebraic relations in

seismic shot data; algebraic determination of a velocity-like field;

(2)(Production-Exploration) Reconstruction of shape changes in

a reservoir; relations between shape changes and production;

(3)(Transients) Dynamic version of the AVI algorithm using

differential polynomials; modeling of time-dependent phenomena

such as transients.
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Applications to Other Industries

(1) (Steel Industry) Control of the heat function in an annealing

process; modeling in the absence of physical laws;

(2) (Financial Industry) Modeling of the volatiliy parameter in

option price theory; prediction of short and long term volatility

functions;

(3) (Heat Engineering) Modeling of the heating and cooling

systems at Passau University; control in highly non-linear dynamical

systems;

(4) (Optics) Modeling of optical systems at their limit of resolution.
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6 – The Algebraic Oil Project

Being right too soon is socially unacceptable.

(Robert A. Heinlein)

Research ⇔

m

SIEP

Exploratory

Research

⇔ Implementation

m

Passau University

Symbolic Computation

RISC Software

Hagenberg (A)

CoCoA Library

Genova Univ. ⇒

ApCoCoA Library

Passau University

33



This is not THE END

or the beginning of the end,

but it is the end of the beginning.

(Winston Churchill)

Thank you for your attention!
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