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Questions, Please!

1. What Is Algebraic Oil?

2. Why Polynomials?

3. What Is Algebraic Modelling?

4. Does It Work?

5. How Does It Work?

6. What Is It Good for?

7. What’s Next?
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1 – What Is Algebraic Oil?

I can’t tell you the secret of the universe,

because then it is no secret anymore.

(Mullah Nasruddin)

The basic idea is to apply methods from computational Algebra to

problems in Oil production and exploration.

3



Computational
Mathematics

↙ ↘

Symbolic
Computation

Numerical
Mathematics

↓ ↓

Computational
Number Theory

Numerical
Analysis

Computational
Commutative

Algebra

Numerical
Linear
Algebra

4



Computational
Mathematics

↙ ↘

Symbolic
Computation

Numerical
Mathematics

↓ ↘ ↙ ↓

Computational
Number Theory

Symbolic-
Numeric

Computation
Numerical
Analysis

Computational
Commutative

Algebra →

Approximate
Computational

Algebra ←

Numerical
Linear
Algebra

5



Upstream
Oil

↙ ↘

Oil
Production

Oil
Exploration

↓ ↘ ↙ ↓

Production
Allocation

Production-
Exploration

Non-Seismic
Exploration

Production
Modelling &
Forecasting

Ultimate
Recovery

Optimization

3D/4D
Seismic

Exploration

6



To a man with a hammer

everything looks like a nail.

Basic Tenet 1

Use the mathematical theory which is most suitable to your

industrial problem.

Don’t let your pre-knowledge determine the tools you use. Let the

application decide which theory works best. If necessary, widen your

mathematical scope.

Basic Tenet 2

Let the application steer your research.

Let it decide which mathematical problem is the next one you should

study.
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2 – Why Polynomials?

Before you criticize someone,

you should walk a mile in their shoes.

That way, when you criticize them,

you’re a mile away and you have their shoes.

R field of real numbers

x1, . . . , xn indeterminates (variables, unknowns)

xα1

1 xα2

2 · · ·x
αn

n term in the indeterminates x1, . . . , xn (where α ≥ 0)

f = c1t1 + · · ·+ csts polynomial in the indeterminates x1, . . . , xn

(where ci ∈ R and ti term)

P = R[x1, . . . , xn] polynomial ring
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Basic modelling problem: Suppose we are given finitely many

data points p1, . . . , ps ∈ R
n and values a1, . . . , as ∈ R of a function f .

Find a simple function f such that f(pi) = ai for i = 1, . . . , s.

Reasons for using polynomials:

• On a finite data set, every function is polynomial.

• Polynomials are dense in many spaces of functions.

• Many important physical laws are given by polynomials (e.g.

F −ma = 0, r2F − γm1m2, E −mc2 = 0, . . . ).

• Polynomials of bounded degree form a sufficiently rigid

interpolation space to offer enough predictive power.
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3 – What Is Algebraic Modelling?

It is kind of fun to do the impossible.

(Walt Disney)

General Modelling Problem: A complex physical system (e.g. an

oil production system) is to be modelled. We have at our disposal

several time series of measurements (production data, test data) and

certain partial differential equations describing particular aspects of

the system.

Traditional Modelling Technique:

• Write down the partial differential equations locally using

indeterminate coefficients.
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• Using the measured data (and a priori assumptions), try to fit as

many coefficients as closely as possible.

• Solve the resulting system of PDEs using standard numerical

analysis techniques.

Problems:

• The measured data may not suffice to determine all coefficients in

the PDEs, since there are too many.

• There may not be a reasonably simple function solving all PDEs.

• The interpolation space is too big (splines, analytic functions). The

predictive power of the model is low: for every future development,

there is a model compatible with the measured data and that future

development.
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Algebraic Modelling Technique

• Starting from the measured data only, use the ABM- or

AVI-algorithms to construct simple polynomials which model the

system within a specified tolerance.

• Use only obvious physical knowledge to guide the computation.

Basic Tenet 3

Do not impose a priori model assumptions on a physical

system. As far as possible, rely only on measured data. Try to

recover basic physical laws (e.g. Bernoulli’s Law) instead of imposing

them.
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4 – Does It Work?

Weather forecast for tonight:

DARK.

Suppose we are given an oil production system (called CW29 here)

and several time series of measurements:

x1 valve position for zone A (0-100)

x2 valve position for zone B (0-100)

x3 = ∆Pchoke flow pressure change at downstream choke (0-5000)

x4 = ∆Pprod. tubing pressure change inflow B → inflow A (0-3010)

x5 = ∆PinflowB reservoir pressure → tubing pressure at B (0-7000)
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x6 = ∆Pdownstr. downstream pressure choke → manifold (9-216)

x7 = ∆PinflowA reservoir pressure → tubing pressure at A (0-1805)

x8 = ∆Ptransp. tubing pressure change inflow A → tubing head (THP)

(5300-10550)
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Algebraic Modelling using the AVI-Algorithm, threshold ε = 0.15

30% of data used for modelling, 70% used for checking the prediction
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5 – How Does It Work?

All models are wrong.

Some models are useful.

(George Box)

Exact Modelling Problem: Given finitely many points

p1, . . . , ps ∈ R
n and numbers a1, . . . , as ∈ R

n, find a polynomial

model f ∈ R[x1, . . . , xn] such that f(pi) = ai for i = 1, . . . , s.

Thus we are asking for multivariate interpolation using the

polynomial ring P = R[x1, . . . , xn].
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Remark. The polynomial f is not unique. Two such polynomials

differ by an element of the set

I = {g ∈ R[x1, . . . , xn] | g(p1) = · · · = g(ps) = 0}

This set is called the vanishing ideal of X = {p1, . . . , ps}. It is a

polynomial ideal, i.e. we have I + I ⊆ I and P · I ⊆ I.

Approximate Interpolation Problem: Given a bound ε > 0, find

a polynomial f as above such that |f(pi)− ai| < ε for i = 1, . . . , s.

Problem: All polynomials having sufficiently small coefficients

vanish approximately at X.

The set of polynomials which vanish approximately at X is not a

polynomial ideal.
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We need to measure the size of a polynomial.

Definition. Given a polynomial f = c1t1 + · · ·+ csts with ci ∈ R

and terms ti ∈ T
n, we let

‖f‖ = ‖(c1, . . . , cs)‖

be the (euclidean) norm of the coefficient vector of f . This defines a

norm on the vector space P .

Definition. (a) Given a bound ε > 0, we say that a polynomial

f ∈ P vanishes ε-approximately at X if |f(pi)| < ε · ‖f‖ for

i = 1, . . . , s.

(b) A polynomial ideal I which is generated by unitary polynomials

f1, . . . , fm (i.e. by polynomials fj satisfying ‖fj‖ = 1) which vanish

ε-approximately at X is called an ε-approximate vanishing ideal

of X.
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Border Bases

When they started to prove even the simplest claims,

many turned out to be wrong.

(Bertrand Russell)

Definition. (a) A finite set of terms O is called an order ideal if

t ∈ O and t′ | t imply t′ ∈ O.

(b) Let O be an order ideal. The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is

called the border of O.

(c) A polynomial ideal I has an O-border basis if the terms in O

form a vector space basis of P/I. (Equivalently, we want

P = I ⊕ 〈O〉K .)
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A Picture of an Order Ideal and its Border
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Properties of Border Bases

Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν} its

border.

Property 1. If an ideal I has an O-border basis, it is generated by

(uniquely determined) polynomials of the form

gj = bj − c1jt1 − · · · − cµjtµ

where cij ∈ R and j = 1, . . . , ν. These polynomials are called the

O-border basis of I.

Property 2. Given any set of polynomials G = {g1, . . . , gν} of this

form (i.e. a so-called border prebasis) there are uniquely

determined equations NRG(Sij) = 0 for the coefficients cij that have

to be satisfied in order for G to be a border basis.
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Property 3. Border bases are numerically stable. Small changes

in the coordinates of the points lead to small changes in the

coefficients cij . Small changes in the coefficients cij (preserving the

equations) keep the property of being a border basis.

Property 4. Border bases frequently keep symmetries.

Property 5. Border bases provide an explicit parametrization of all

0-dimensional polynomial ideals.
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Approximate Border Bases

I had a fortune cookie and it said:

“Outlook not so good!”

“Sure, but Microsoft ships it anyway!”

Definition. Let O = {t1, . . . , tµ} be an order ideal and

∂O = {b1, . . . , bν} its border. Let ε > 0.

A set of polynomials G = {g1, . . . , gν} is called an ε-approximate

O-border basis if

(a) it is an O-border prebasis, i.e. gj = bj − c1jt1 − · · · − cµjtµ with

cij ∈ R for j = 1, . . . , ν, and

(b) the equations defining border bases are almost satisfied, i.e. we

have |NRG(Sij)| < ε for all i, j.
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The AVI-Algorithm

What gets us into trouble is not what we don’t know,

its what we know for sure that just ain’t so.

(Mark Twain)

Goal: Given a set of (approximate) points X = {p1, . . . , ps} in R
n

and ε > 0, find an order ideal O and an approximate O-border basis

G such that the polynomials in G vanish ε-approximately at the

points of X.

Notice that, in general,

• we have #O << #X,

• the ideal 〈G〉 is the unit ideal.
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Theorem 5.1 (The AVI Algorithm)

The following algorithm computes an approximate border basis of an

approximate vanishing ideal of a finite set of points X ⊆ [−1,1]n.

A1 Start with lists G = ∅, O = [1], a matrix

M = (1, . . . , 1)tr ∈Mats,1(R), and d = 0.

A2 Increase d by one and let L be the list of all terms of degree d

in ∂O, ordered decreasingly w.r.t. σ. If L = ∅, return the pair

(G,O) and stop. Otherwise, let L = (t1, . . . , t`).

A3 Let m be the number of columns of M. Form the matrix

A = (eval(t1), . . . , eval(t`),M) ∈Mats,`+m(R).

Using its SVD, calculate a matrix B whose column vectors are

an ONB of the approximate kernel apker(A, ε).
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A4 Compute the stabilized reduced row echelon form of Btr

with respect to the given τ . The result is a matrix

C = (cij) ∈ Matk,`+m(R) such that cij = 0 for j < ν(i). Here ν(i)

denotes the column index of the pivot element in the ith row of C.

A5 For all j ∈ {1, . . . , `} such that there exists a i ∈ {1, . . . , k} with

ν(i) = j (i.e. for the column indices of the pivot elements),

append the polynomial

cijtj +
∑`

j′=j+1
cij′tj′ +

∑`+m
j′=`+1

cij′uj′

to the list G, where uj′ is the (j′ − `)th element of O.

A6 For all j = `, `− 1, . . . , 1 such that the jth column of C contains

no pivot element, append the term tj as a new first element

to O and append the column eval(tj) as a new first column toM.
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A7 Using the SVD ofM, calculate a matrix B whose column vectors

are an ONB of apker(M, ε).

A8 Repeat steps A4 – A7 until B is empty. Then continue with

step A2.

This algorithm returns the following results:

(a) The set O = {t1, . . . , tµ} is an order ideal of terms which is

strongly linearly independent on X, i.e. such that there is no

unitary polynomial in 〈O〉K which vanishes ε-approximately on X.

(b) The set G is a δ-approximate O-border basis. (An explicit

bound for δ can be given.)
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Modelling Oil Production

Finagle’s First Law:

If an experiment works,

something has gone wrong.

Example 5.2 For a certain oil well, we have 7400 data points in R
8.

We use 30% of the points for modelling the total production in the

following way:

(a) Using the AVI-Algorithm with ε = 0.1, compute an order ideal O

and its evaluation matrix eval(O).

(b) Find the vector in the linear span of the rows of eval(O) which is

closest to the total production.
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(c) The corresponding linear combination of terms in O is the

model polynomial for the total production.

(d) Plot all values of the model polynomial at the given points.

Compare them at the points which were not used for modelling with

the actual measured values.

Example 5.3 Using the same data points, ε = 0.1, and the same

procedure, model the total gas production.
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Algebraic Modelling of CW29 gas production, AVI-Alg., ε = 0.1

30% of data used for modelling, 70% used for checking the prediction
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6 – What Is It Good for?

These are the conclusions

on which I base my facts.

(Adlai Stevenson)

Applications of Algebraic Modelling Techniques:

• Long-term production forecasts

• Subsurface interactions between production zones

• Production allocation
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Long Term Production Forecasts

• Produce production models for longer time scales:

hours → days → weeks → months

• Study the changes of the coefficients of the production

polynomials over time

• Predict discontinuities (gassing out, water breakthrough)
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Subsurface Interactions
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Interpretation of the production polynomial:

Consider the indeterminates xi as random variables which assume

“random” values at the different points.

Then the coefficients of the indeterminates in the production

polynomial are the main effects.

The coefficients of the terms xixj represent the correlation

coefficients of the quantities corresponding to xi and xj .

Thus these coefficients measure the strength of the interaction

between xi and xj . Their sign determines whether this interaction

yields a positive or negative contribution to the production.
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Example 6.1 (Fluid and Gas Interaction)

Let us model Zone A of a certain two-zone well using the AVI

algorithm. We use only the driving quantities

x[1] : xA (valve opening)

x[2] : ∆Pdownstream

x[3] : ∆Pchoke

x[4] : ∆Ptransport tubing

x[5] : ∆Pinflow A

After normalization to [0, 1], the fluid production QA and the gas

production GA are approximated (using ε = 0.25, mean evaluation

error 0.12) by the following polynomials:
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pQA ≈ −0.55x1x4 + 1.64x4x5 − 0.03x1 − 1.19x3 − 0.98x4

+1.08 (x5 − 1)2 + 0.62

pGA ≈ 0.01x1x4 + 0.84x4x5 − 0.01x1 − 0.44x3 − 0.54x4

+0.46 (x5 − 1)2 + 0.37

As we can see, we have pQA − 2.33 pGA ≈ h(x1, . . . , x5) with a

“small” polynomial h that is essentially inversely correlated to x4,

the transport tubing pressure difference.

This results suggests the following interpretation: Fluid and gas

production in Zone A are essentially proportional. However, at

increasing production rates the large gas volume in the production

tubing reduces the fluid production.
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Example 6.2 (Gas Interacting with Oil Production)

Now we model the oil production of zones A/B of well CW29 using

the following quantities:

x[1] : ∆Pvalve A

x[2] : ∆Pvalve B

x[3] : Gas Production

x[4] : ∆Pprod.tubing

x[5] : ∆Ptransp.tubing

We use 35% of the 6000 data points and ε = 0.1.

The computed order ideal has 12 terms:

{1, x5, x4, x3, x2, x1, x
2
5, x4x5, x3x5, x3x4, x1x4, x1x3}
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The oil production polynomial is approximately given by

0.14 x1x3 − 0.23 x1x4 + 0.39 x3x4 − 1.43 x3x5 + 1.2 x4x5 − 0.3 x2
5

+0.11 x1 + 1.46 x3 − 1.25 x4 + 1.6x5 − 0.55

Its terms involving x3 (gas production) may be interpreted as follows:

0.14 x1x3 gas is mainly produced at valve A (no term x2x3)

1.46 x3 gas stimulates oil production

−1.43 x3x5 with increasing production, gas inhibits oil

0.39 x3x4 to be ignored, since x4 takes very small values
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The Ultimate Goal: Increase the ultimate recovery by

constructing a long term model and adjusting the production

strategy according to its predictions.

Further Results: Determine a model for the liquid-gas relationship,

adjust the production parameters to achieve an optimal liquid-gas

relationship.
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Production Allocation

When working towards the solution of a problem

it helps if you know the answer.

Problem: Several zones of a well are producing together

(commingled production). Some of them are influencing each

other. Typical interactions are:

(1) The oil produced by one zone may push back the oil trying to

flow in at another zone.

(2) The gas which is produced simultaneously with the oil may have

stimulating or inhibiting effects (liquid-gas relationship).

(3) Zones may or may not be connected inside the reservoir;

preferential paths may exist.
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Tasks: (1) Determine and quantify these interactions!

(2) Construct production models which take these interactions into

account and correctly allocate the production to the different inflow

valves.

(3) Derive long-term production forecasts and suitable production

strategies. Improve the Ultimate Recovery!

Hypothesis: Assume that suitable production polynomials pA, pB,

and pAB have been constructed during suitable well tests.
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The Subideal Version of the AVI-Algorithm

Let X ⊂ [−1, 1]n be a finite set of points, let ε > 0 be a given

threshold number, and let F = {f1, . . . , fm} be a set of non-zero

unitary polynomials.

Then there exists an algorithm which computes an F -order ideal OF

and an ε-approximate OF -subideal border basis G which

vanishes ε-approximately at X.

Using this algorithm, we can construct approximate interpolation

polynomials which are contained in the given polynomial ideal

〈f1, . . . , fm〉.
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Solution of the Production Allocation Problem

Let us define the contributions cA and cB to be the part of the

total production passing through the corresponding down-hole valve.

Let xA, xB represent the valve positions. Here xi = 0 means that the

valve is closed and xi = 1 corresponds to a fully opened valve.

If valve A is closed, i.e. for points in Z(xA), there is no contribution

from zone A. By Hilbert’s Nullstellensatz, this means pA ∈ 〈xA〉

and similarly pB ∈ 〈xB〉.

To model pAB, we write pAB = pA + pB + qAB where qAB is a

polynomial which measures the interaction of the two zones.

44



To compute qAB, we write qAB = fA · (xB pA) + fB · (xA pB) and

note that this can be computed via the subideal version of the

AVI-algorithm.

The result is pAB = pA + pB + fAxBpA + fBxApB and satisfies

xA = 0⇒ pAB = pB as well as xB = 0⇒ pAB = pA.

The contributions of the two zone are then given by

cA = (1 + fAxB)pA and cB = (1 + fBxA)pB.

At the same time we gain a detailed insight into the nature of the

interactions by examining the structure of the polynomials fA, fB.
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7 – What’s Next?

Prediction is very difficult.

Especially if it’s about the future.

(Niels Bohr)

The algebraic modelling techniques can be extended to cover more

applications in the oil & gas industry:

• Dynamic modelling (using differential polynomials)

• Geometric exploration (3D algebraic modelling)

• Production-exploration (4D algebraic modelling)
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Dynamic Modelling

Change is inevitable.

Except from a vending machine.

Idea: So far we have only produced steady-state models. If

dynamic changes occur, we should take the time-derivatives of the

physical quantities into account.

Algebraic Formulation: Instead of polynomials, use differential

polynomials. Besides the indeterminates x1, . . . , xn, they use

indeterminates ẋ1, . . . , ẋn for their (time-) derivatives, indeterminates

ẍ1, . . . , ẍn for their second (time-) derivatives, etc.

Problems: The differential polynomial ring

D = R[x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn, . . . ] is not noetherian, i.e.

not every ideal is finitely generated.
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EMR1: Approximate Differential Algebra

• Develop the Groebner basis theory for differential polynomials

of Bluhm-K. further.

• Develop a differential analogue of border basis theory.

• Develop differential versions of the BM-algorithm for

computing vanishing ideals of points.

• Develop and implement approximate versions of the

differential BM-algorithm (differential AVI-algorithm)

• Apply the new algorithms to actual industrial data.
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Applications of the DAVI-Algorithm

Modelling Transients: Operations such as starting up or shutting

down a platform, switching a well from production to testing or vice

versa, etc. introduce dynamic changes in the measured quantities; to

model transients we need differential polynomials and the

DAVI-algorithm.

Optimizing Transients: Modelling of the reaction of the

production system with respect to control operations allows

predictions. Derive optimal transients (e.g. start-up sequences) to

avoid undesirable intermediate states (e.g. water breakthrough) and

desirable final states (e.g. high production level).

49



Geometric Exploration

Your brain works faster than you think.

Idea: Traditional 3D seismic modelling involves substantial human

intervention — it is like an art. Using a 3D algebraic modelling

technique, find algorithms to replace non-algorithmic steps.

Main Goal: Find a model for the shape of the oil/gas body which is

an algebraic surface. In this way, identify also non-traditional shapes.
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From Robertson, Seismic Processing Tutorial:

The picking of seismic velocities is one of the most boring, routine

and important jobs still left firmly in the hands of the processing

geophysicist.

The picking of velocities requires a very detailed knowledge of the

geology.

3D Algebraic Modelling: • Use the seismic shot data.

(Traditional seismic modelling uses “seismic data” in which the shot

data have undergone already some transformations that destroy

geometric information.)

51



• Apply a suitable version of the ABM-algorithm to recover the

velocity field.

• Using cut-off functions or level sets, construct a cloud of points

that delineates approximately the border of the oil/gas body.

• Again use a suitable version of the AVI-algorithm to construct

an algebraic surface that approximates this border.

Applications: • Algorithmic computation of velocity fields putting

only moderate demands on signal-to-noise ratios.

• Discovery of oil/gas bodies having non-traditional

geometries.
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Production-Exploration

Being right too soon is socially unacceptable.

(Robert A. Heinlein)

Idea: Suppose that for a certain oil/gas body repeated seismic

surveys are available. Using the Geometric Exploration technique

(or a traditional modelling technique) construct algebraic surfaces

which delineate the shapes of this oil/gas body at different points in

time (4D Algebraic Modelling).

Application 1: Estimation of oil/gas bodies (appraisal phase).

Application 2: The change in shape is caused by production.

Analysing the deformation of the algebraic surface, relate it to the

production, and predict the further development under different

production scenarios. Derive a production strategy which induces a

desirable change in the geometry of the oil/gas body.
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Schematic Example of Shape Changes
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Applications in Other Areas

Your theory is crazy.

But it’s not crazy enough to be true.

(Niels Bohr)

• steel industry: heat control during annealing

• financial industry: option price volatility modelling

• optical industry: camera calibration at the resolution limit

• heat engineering: heating and cooling systems at Passau

university

• banking industry: modelling of sales department
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This is not THE END

or the beginning of the end,

but it is the end of the beginning.

(Winston Churchill)

Thank you for your attention!

In the end, everything is a gag.

(Charlie Chaplin)
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