From seismic data to algebraic surfaces

Jan Limbeck

Department of Informatics and Mathematics University of Passau

04/03/2010 Algebraic Oil Project Workshop, Passau

→ Ξ →

Outline

General Setting

Timeline

- Oevelopement and implementation of algorithms
 - ABM algorithm
 - The extended ABM algorithm

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

General Setting

Outline

Timeline

- 3 Developement and implementation of algorithms
 - ABM algorithm
 - The extended ABM algorithm

Applications

- Application of the extended ABM
- Application of the ABM algorithm

4 E N

General Setting

Current situation 3D seismic imaging

• Most methods are "model driven"

- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^3$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

・吊り ・ラト ・ラ

General Setting

Current situation 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point p ∈ ℝ³ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

・吊り ・ラト ・ラ

General Setting

Current situation 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^3$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

A (1) < A (1) < A (1) < A (1) </p>

General Setting

Current situation 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^3$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

• • **=** • • **=**

 Motivation Timeline Developement and implementation of algorithms Summary
 General Setting

 Current situation Interpretation of seismic images
 General Setting

- Introduction of layers/regions, which allow the separation of different regions
 - usually performed in an interactive way
 - rather simple geometric structures
 - or composition of local approximations e.g. simplicial surfaces

(1日) (1日) (1日)

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Current situation Interpretation of seismic images	

- Introduction of layers/regions, which allow the separation of different regions
 - usually performed in an interactive way
 - rather simple geometric structures
 - or composition of local approximations e.g. simplicial surfaces

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Current situation Interpretation of seismic images	

- Introduction of layers/regions, which allow the separation of different regions
 - usually performed in an interactive way
 - rather simple geometric structures
 - or composition of local approximations e.g. simplicial surfaces

General Setting

Current situation Advantages and disadvantages

Advantages

Proven techniques

Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
 - Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

< ロ > < 同 > < 回 > < 回 >

General Setting

Current situation Advantages and disadvantages

Advantages

Proven techniques

• Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
 - Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

< ロ > < 同 > < 回 > < 回 >

General Setting

Current situation Advantages and disadvantages

Advantages

Proven techniques

• Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
 - Difficult to relate temporal changes in the oil field (4D seismics)

Big datasets especially for 4D seismics

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Setting

Current situation Advantages and disadvantages

Advantages

Proven techniques

• Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
 - Difficult to relate temporal changes in the oil field (4D seismics)

Big datasets especially for 4D seismics

(日) (同) (三) (三)

General Setting

Current situation Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
 - Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach
 - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

(1日) (1日) (1日)

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach
 - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

(1日) (1日) (1日)

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach
 - Less upfront assumptions
- Compact mathematical representation

• Discover "unconventional" geometric structures

• • • • • • •

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach
 - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

4 3 1 4

General Setting

Algebraic surfaces A known example

Example (3D Unit Sphere)

Equation:

$$x^2 + y^2 + z^2 = 1$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Setting

Algebraic surfaces

Definition (3 dimensional algebraic surface)

The (real) zeroset of a polynomial equation in 3 indeterminates $\mathscr{Z}(p), \ p \in \mathbb{R}[x,y,z]$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

General Setting

Algebraic surfaces Advantages in modelling

• Rather "simple" equations

- Compact description compared to simplicial surfaces (≈triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

▲ □ ▶ ▲ □ ▶ ▲

General Setting

Algebraic surfaces Advantages in modelling

- Rather "simple" equations
- Compact description compared to simplicial surfaces (≈triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

I = I → I

General Setting

Algebraic surfaces Advantages in modelling

- Rather "simple" equations
- Compact description compared to simplicial surfaces (≈triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

4 3 5 4

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Algebraic surfaces A basis for future improvements	

- "Simple" description
- Deformation of algebraic surfaces

Long term goal:

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Algebraic surfaces A basis for future improvements	

- "Simple" description
- Deformation of algebraic surfaces

Long term goal:

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Algebraic surfaces A basis for future improvements	

- "Simple" description
- Deformation of algebraic surfaces

Long term goal:

Motivation Timeline Developement and implementation of algorithms Applications Summary	General Setting
Algebraic surfaces A basis for future improvements	

- "Simple" description
- Deformation of algebraic surfaces

Long term goal:

Milestones Completed tasks

October 2008: Initial involvement in project

October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

・吊り ・ラト ・ラ

Milestones Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far

November 2008 - February 2009: Initial ideas for the ABM-algorithm

March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

マロト マヨト マヨ

Milestones Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm

March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

マロト マヨト マヨ

Milestones Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

・ 同 ト ・ ヨ ト ・ ヨ

Milestones Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

・ロト ・ 同ト ・ ヨト ・ ヨト

March 2010 - September 2010: Application to real world seismic data

September 2010 - March 2011: Investigation of relation between production and change of shapes March 2010 - September 2011: Completion and compilation of the thesis

(1日) (1日) (1日)

March 2010 - September 2010: Application to real world seismic data September 2010 - March 2011: Investigation of relation between production and change of shapes March 2010 - September 2011: Completion and compilation of the thesis

マロト マヨト マヨ

March 2010 - September 2010: Application to real world seismic data September 2010 - March 2011: Investigation of relation between production and change of shapes March 2010 - September 2011: Completion and compilation of the thesis

• • • • • • •

Starting point - AVI Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X} = \{p_1, ..., p_\mu\} \in \mathbb{R}^d$ and threshold number ε .

Output

Approximate border basis G with respect to an order ideal \mathscr{O} .

Features of the original AVI algorithm

- Approximate border basis
- $\bullet\,$ Set of polynomials, which have small evaluations at $\mathbb X$

Starting point - AVI Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X} = \left\{p_1, ..., p_\mu\right\} \in \mathbb{R}^d$ and threshold number ε .

Output

Approximate border basis G with respect to an order ideal \mathscr{O} .

Features of the original AVI algorithm

- Approximate border basis
- $\bullet\,$ Set of polynomials, which have small evaluations at $\mathbb X$

Starting point - AVI Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X} = \left\{p_1, ..., p_\mu\right\} \in \mathbb{R}^d$ and threshold number ε .

Output

Approximate border basis G with respect to an order ideal \mathscr{O} .

Features of the original AVI algorithm

- Approximate border basis
- $\bullet\,$ Set of polynomials, which have small evaluations at $\mathbb X$

・ロト ・ 同ト ・ ヨト ・ ヨ

Internship in Rijswijk _{Goals}

• Learn the very basics of seismics and seismic imaging

- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain ⇒ Seismic Unix

・ 同 ト ・ ヨ ト ・ ヨ

Internship in Rijswijk _{Goals}

- Learn the very basics of seismics and seismic imaging
- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain ⇒ Seismic Unix

・ 同 ト ・ ヨ ト ・ ヨ

Internship in Rijswijk _{Goals}

- Learn the very basics of seismics and seismic imaging
- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain ⇒ Seismic Unix

• • **=** • • **=**

ABM algorithm The extended ABM algorithm

Outline

2 Timeline

Developement and implementation of algorithms ABM algorithm

• The extended ABM algorithm

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

I = I → I

ABM algorithm The extended ABM algorithm

The ABM algorithm

Algorithm (ABM)

(3)

5

(6)

Let $\mathbb{X} = \{p_1, ..., p_s\} \subset \mathbb{R}^n$, let $P = \mathbb{R}[x_1, ..., x_n]$.let $eval : P \to \mathbb{R}^s$ be the associated evaluation map $eval(f) = (f(p_1), ..., f(p_s))$ and let $\varepsilon > \tau > 0$ be small numbers. With $\|\cdot\|$ we denote the euclidean norm. Moreover we choose a degree compatible term ordering σ .

- U Start with lists $G = \emptyset$, $\mathscr{O} = [1]$, a matrix $M = (1, ..., 1)^{tr} \in Mat_{s,1}(\mathbb{R})$ and d = 0.
- **2** Increase d by one and let L be the list of terms in degree d in $\partial \mathcal{O}$ ordered decreasingly with respect to σ . If $L = \emptyset$ return the pair (G, \mathcal{O}) and stop. Otherwise let $L = (t_1, ..., t_l)$.

Begin with i := 1 and calculate

$$A = eval(t_i, M) \in Mat_{s, 1+m}(\mathbb{R})$$

Now calculate the least squares solution of $Ax \approx \vec{0}$ with ||x|| = 1, which is the smallest norm one eigenvector of $A^{tr}A$. Let us denote the solution with $s = (s_1, ..., s_I)$ and the smallest eigenvector with e.

Now calculate $\iota = \sqrt{e}$ and check if $\iota < \varepsilon$. If so, we add $s_1 t_1 + ... + s_j t_j = 0$ to G, otherwise we add t_i to the order ideal \mathscr{O} and additionally eval (t_j) to M.

Now we set i := i + 1. As long as i < l go to step 3.

Continue with step 2.

ABM algorithm The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ABM algorithm The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

イロト イポト イヨト イヨト

ABM algorithm The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

・ロト ・ 同ト ・ ヨト ・ ヨ

ABM algorithm The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

イロト イポト イヨト イヨト

ABM algorithm The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

・ロト ・ 同ト ・ ヨト ・ ヨ

ABM algorithm The extended ABM algorithm

Outline

2 Timeline

- Oevelopement and implementation of algorithms
 - ABM algorithm
 - The extended ABM algorithm

Applications

- Application of the extended ABM
- Application of the ABM algorithm

I = I → I

ABM algorithm The extended ABM algorithm

The extended ABM algorithm

Algorithm (Extended ABM)

Let $\mathbb{X} = \{p_1, ..., p_s\} \subset \mathbb{R}^n$, $\mathbb{V} = (v_1, ..., v_s) \subset \mathbb{R}$ let $P = \mathbb{R}[x_1, ..., x_{n+1}]$, let eval : $P \to \mathbb{R}^s$ be the associated evaluation map eval $(f) = (f(p_1), ..., f(p_s))$ and let $\varepsilon > \tau > 0$ be small numbers. With $\|\cdot\|$ we denote the euclidean norm. Moreover we choose a degree compatible term ordering σ .

- **O** Start with lists $G = \emptyset$, $\mathscr{O} = [1]$, a matrix $M = (1, ..., 1)^{tr} \in Mat_{s,1}(\mathbb{R})$ and d = 0.
- Increase d by one and let L be the list of terms in degree d in ∂θ ordered decreasingly with respect to σ. If L=0 return the pair (G, θ∪x_{n+1}) and stop. Otherwise let L = (t₁,...,t_l).

Begin with i := 1 and calculate

(3)

(5)

(6)

$$A = eval(t_i, M) \in Mat_{s, 1+m}(\mathbb{R})$$

Now calculate the least squares solution of $Ax \approx \mathbb{V}$. If $\|\mathbb{V}\| < \tau$ calculate the solution of $Ax \approx \vec{0}$, $\|x\| = 1$, which is the smallest norm one eigenvector of $A^{tr}A$. If $\|\mathbb{V}\| \geq \tau$ calculate it using the QR decomposition of A. Let us denote the solution with $s = (s_1, ..., s_l)$.

Now calculate $\iota = ||As - V||$ and check if $\iota < \varepsilon$. If so, we add $s_1 t_1 + ... + s_l t_l - x_{n+1} = 0$ to G, otherwise we add t_i to the order ideal \mathscr{O} and additionally eval (t_i) to M.

Now we set i := i + 1. As long as i < l go to step 3.

Continue with step 2.

ABM algorithm The extended ABM algorithm

The extended ABM algorithm Properties

Properties

- ABM is a special case of the extended ABM algorithm
- Allows the controlled modelling of one specific measurement
 - Resulting polynomials are functions in the input measurements
 - Direct control of the residual error

ABM algorithm The extended ABM algorithm

The extended ABM algorithm Properties

Properties

- ABM is a special case of the extended ABM algorithm
- Allows the controlled modelling of one specific measurement
 - Resulting polynomials are functions in the input measurements
 - Direct control of the residual error

ABM algorithm The extended ABM algorithm

Implementation of algorithms

Implementation in ApCoCoALib

All presented algorithms are implemented in the ApCoCoA library

Access via

- the CoCoAL language for prototyping
- C++ for high performance

(1日) (1日) (1日)

ABM algorithm The extended ABM algorithm

Implementation of algorithms

Implementation in ApCoCoALib

- All presented algorithms are implemented in the ApCoCoA library
- Access via
 - the CoCoAL language for prototyping
 - C++ for high performance

I = I → I

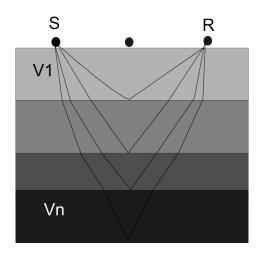
Application of the extended ABM Application of the ABM algorithm

Outline

General Setting

2 Timeline

- 3 Developement and implementation of algorithms
 - ABM algorithm
 - The extended ABM algorithm

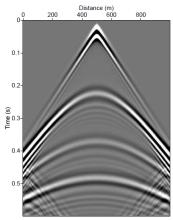

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

< ∃ →

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities


< 一型

→ 《 문 ▶ 《 문 ▶

æ

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities Similar example: Seismogram for 3 layers

Surface data (dx=5 m, z=5 m)

< A

▶ < ∃ ▶</p>

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities A data driven approach

Use the extended ABM to model the hyperbolas.

Input: Points picked along a wavefront Output: Algebraic equations

In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations.

・吊り ・ ヨト ・ ヨ

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities A data driven approach

Use the extended ABM to model the hyperbolas.

Input: Points picked along a wavefront Output: Algebraic equations

In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations.

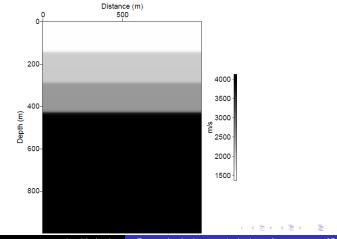
A (1) < (1) < (1) < (1) < (1) </p>

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities A data driven approach

Use the extended ABM to model the hyperbolas.

Input: Points picked along a wavefront Output: Algebraic equations


In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations.

.

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

In the case of our example we obtain:

Jan Limbeck From seismic data to algebraic surfaces 27 / 38

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

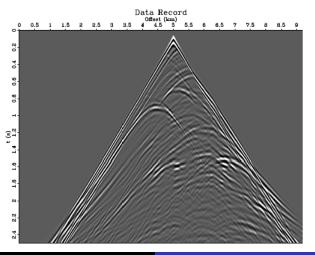
Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities

Advantages


- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Application of the extended ABM Application of the ABM algorithm

Recovery of velocities One of our goals - the Marmousi model

Jan Limbeck From seismic data to algebraic surfaces

Application of the extended ABM Application of the ABM algorithm

Outline

- 2 Timeline
- 3 Developement and implementation of algorithms
 - ABM algorithm
 - The extended ABM algorithm

Applications

- Application of the extended ABM
- Application of the ABM algorithm

< ∃ →

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 400 3D points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise
- Are not dense at all locations

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 400 3D points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise

• Are not dense at all locations

イロト イポト イヨト イヨト

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure Using noisy incomplete datasets

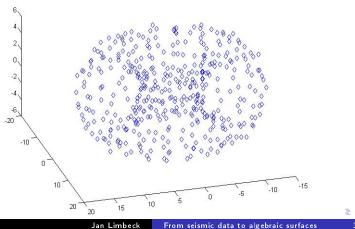
Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 400 3D points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise

Are not dense at all locations

イロト イ得ト イヨト イヨト

Application of the extended ABM Application of the ABM algorithm


The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 400 3D points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise
- Are not dense at all locations

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure Visualized with MatLab

32 / 38

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

Convert input data into CoCoA matrix format (list format)

- ② Apply ABM algorithm with $\varepsilon = 4$. Runtime 1.4 seconds for 400 Points.
- The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75.
 Polynomials are ordered by increasing degree.
 Simpler structures come first.
- Iready the first polynomial gives a reasonable answer!

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

- Convert input data into CoCoA matrix format (list format)
- Output ABM algorithm with $\varepsilon = 4$. Runtime 1.4 seconds for 400 Points.
- The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75.
 Polynomials are ordered by increasing degree.
 Simpler structures come first.
- Iready the first polynomial gives a reasonable answer!

4 🗇 🕨 4 🖻 🕨 4

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

- Convert input data into CoCoA matrix format (list format)
- ② Apply ABM algorithm with $\varepsilon = 4$. Runtime 1.4 seconds for 400 Points.
- The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75.
 Polynomials are ordered by increasing degree.
 Simpler structures come first.
- Iready the first polynomial gives a reasonable answer!

(1日) (1日) (1日)

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

- Convert input data into CoCoA matrix format (list format)
- ② Apply ABM algorithm with $\varepsilon = 4$. Runtime 1.4 seconds for 400 Points.
- The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75.
 Polynomials are ordered by increasing degree.
 Simpler structures come first.
- 4 Already the first polynomial gives a reasonable answer!

4 🗇 🕨 4 🖻 🕨 4

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure Visualization of the first polynomial

 $x^{4} + 2x^{2}y^{2} + y^{4} + 2.3x^{2}z^{2} + 2.2y^{2}z^{2} - 276.8x^{2} - 278.2y^{2} + 10822.8$

4 E 5 4

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

So how good is the obtained result?

Original equation:

 $x^{4} + 2x^{2}y^{2} + y^{4} + 2x^{2}z^{2} + 2y^{2}z^{2} + z^{4} - 250x^{2} - 250y^{2} + 150z^{2} + 5625$

Compared to recovered equation:

 $x^{4} + 2x^{2}y^{2} + y^{4} + 2.3x^{2}z^{2} + 2.2y^{2}z^{2} - 276.8x^{2} - 278.2y^{2} + 10822.8$

Given only a set of noisy measurements we were able to recover a slightly deformed torus!

イロト イポト イヨト イヨト

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

So how good is the obtained result?

Original equation:

 $x^4 + 2x^2y^2 + y^4 + 2x^2z^2 + 2y^2z^2 + z^4 - 250x^2 - 250y^2 + 150z^2 + 5625$

Compared to recovered equation:

 $x^{4} + 2x^{2}y^{2} + y^{4} + 2.3x^{2}z^{2} + 2.2y^{2}z^{2} - 276.8x^{2} - 278.2y^{2} + 10822.8$

Given only a set of noisy measurements we were able to recover a slightly deformed torus!

くロト く得ト くヨト くヨトー

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

So how good is the obtained result?

Original equation:

 $x^4 + 2x^2y^2 + y^4 + 2x^2z^2 + 2y^2z^2 + z^4 - 250x^2 - 250y^2 + 150z^2 + 5625$

Compared to recovered equation:

 $x^{4} + 2x^{2}y^{2} + y^{4} + 2.3x^{2}z^{2} + 2.2y^{2}z^{2} - 276.8x^{2} - 278.2y^{2} + 10822.8$

Given only a set of noisy measurements we were able to recover a slightly deformed torus!

イロト イポト イヨト イヨト

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure
- Compact representation: 400 points reduced to one equation

<**₩** > < **₩** > <

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure

Compact representation: 400 points reduced to one equation

<**1**₽ ► < **2** ► <

Application of the extended ABM Application of the ABM algorithm

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure
- Compact representation: 400 points reduced to one equation

• Overview of current situation

- (Extended) ABM algorithm
- Application to example data

Outlook

- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

► < Ξ > <</p>

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data

Outlook

- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

I = I → I

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data

Outlook

- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

I = I → I

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data

Outlook

- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

4 3 5 4

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
 - Apply algorithm to more complex/real data
 - Improve algorithm(s) and surrounding toolchain
 - Prove mathematical correctness of algorithms in PhD thesis

4 E 5 4

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
 - Apply algorithm to more complex/real data
 - Improve algorithm(s) and surrounding toolchain
 - Prove mathematical correctness of algorithms in PhD thesis

4 B b 4

Thank you for your attention

Any questions?

< **∃** → <