From seismic data to algebraic surfaces

Jan Limbeck

Department of Informatics and Mathematics
University of Passau

04/03/2010
Algebraic Oil Project Workshop, Passau

Outline

(1) Motivation

- General Setting
(2) Timeline
(3) Developement and implementation of algorithms
- ABM algorithm
- The extended ABM algorithm
(4) Applications
- Application of the extended ABM
- Application of the ABM algorithm

Developement and implementation of algorithms Applications Summary

General Setting

Outline

(1) Motivation

- General Setting
(2) Timeline

3 Developement and implementation of algorithms

- ABM algorithm
- The extended ABM algorithm

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

Current situation
 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^{3}$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

Current situation
 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^{3}$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

Current situation
 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^{3}$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

Current situation
 3D seismic imaging

- Most methods are "model driven"
- Typical result of seismic imaging: model of the subsurface as a cloud of points
- Every point $p \in \mathbb{R}^{3}$ is associated with a tuple of parameters, typically velocity, density,
- Non continuous changes in these parameters allow conclusions about the geological subsurface structure

Current situation
 Interpretation of seismic images

- Introduction of layers/regions, which allow the separation of different regions
- usually performed in an interactive way
- rather simple geometric structures
- or composition of local approximations e.g. simplicial surfaces

Current situation
 Interpretation of seismic images

- Introduction of layers/regions, which allow the separation of different regions
- usually performed in an interactive way
- rather simple geometric structures
- or composition of local approximations e.g. simplicial surfaces

Current situation
 Interpretation of seismic images

- Introduction of layers/regions, which allow the separation of different regions
- usually performed in an interactive way
- rather simple geometric structures
- or composition of local approximations e.g. simplicial surfaces

Developement and implementation of algorithms Applications Summary

General Setting

Current situation
 Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
- Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

Motivation
Timeline
Developement and implementation of algorithms Applications Summary

General Setting

Current situation
 Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only Iocal view of the problem
- Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

Motivation
Timeline
Developement and implementation of algorithms Applications Summary
General Setting

Current situation
 Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
- Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

Current situation
 Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
- Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

Current situation
 Advantages and disadvantages

Advantages

- Proven techniques
- Incorporates knowledge of geologists/interpreters

Disadvantages

- Only local view of the problem
- Difficult to relate temporal changes in the oil field (4D seismics)
- Big datasets especially for 4D seismics

Where we come into play

Our vision

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

Where we come into play

Our vision

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

Where we come into play

Our vision

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

Where we come into play

Our vision

Are there alternatives?

Our vision

- Move from a model driven world to a data driven approach - Less upfront assumptions
- Compact mathematical representation
- Discover "unconventional" geometric structures

Algebraic surfaces

A known example

Example (3D Unit Sphere)

Equation:

$$
x^{2}+y^{2}+z^{2}=1
$$

Algebraic surfaces

Definition (3 dimensional algebraic surface)

The (real) zeroset of a polynomial equation in 3 indeterminates $\mathscr{Z}(p), p \in \mathbb{R}[x, y, z]$

Algebraic surfaces

Advantages in modelling

- Rather "simple" equations
- Compact description compared to simplicial surfaces (\approx triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

Algebraic surfaces
 Advantages in modelling

- Rather "simple" equations
- Compact description compared to simplicial surfaces (\approx triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

Algebraic surfaces
 Advantages in modelling

- Rather "simple" equations
- Compact description compared to simplicial surfaces (\approx triangulated surfaces)
- Mathematical theory provided by Algebraic Geometry

Algebraic surfaces
 A basis for future improvements

Algebraic surfaces provide the foundation for relating the changes of the shape of an oil field in time due to

- "Simple" description
- Deformation of algebraic surfaces
Long term goal:

Relate oil/gas production to the changes in the shape of the oil body.

Algebraic surfaces
 A basis for future improvements

Algebraic surfaces provide the foundation for relating the changes of the shape of an oil field in time due to

- "Simple" description
- Deformation of algebraic surfaces
Long term goal:

Relate oil/gas production to the changes in the shape of the oil body.

Algebraic surfaces
 A basis for future improvements

Algebraic surfaces provide the foundation for relating the changes of the shape of an oil field in time due to

- "Simple" description
- Deformation of algebraic surfaces
Long term goal:

Relate oil/gas production to the changes in the shape of the oil body.

Algebraic surfaces
 A basis for future improvements

Algebraic surfaces provide the foundation for relating the changes of the shape of an oil field in time due to

- "Simple" description
- Deformation of algebraic surfaces

> Long term goal:

Relate oil/gas production to the changes in the shape of the oil body.

Milestones
 Completed tasks

October 2008: Initial involvement in project
October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm
March 2009 - August 2009: Internship in Rijswijk
September 2009 - February 2010: Developement and
implementation of algorithms/ Application to synthetic data

Milestones
 Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far
November 2008 - February 2009: Initial ideas for the
ABM-algorithm
March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

Milestones

Completed tasks

October 2008: Initial involvement in project October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far November 2008 - February 2009: Initial ideas for the ABM-algorithm
March 2009 - August 2009: Internship in Rijswijk
September 2009 - February 2010: Developement and
implementation of algorithms/ Application to synthetic data

Milestones

Completed tasks

October 2008: Initial involvement in project
October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far
November 2008 - February 2009: Initial ideas for the ABM-algorithm
March 2009 - August 2009: Internship in Rijswijk
September 2009 - February 2010: Developement and
implementation of algorithms/ Application to synthetic data

Milestones

Completed tasks

October 2008: Initial involvement in project
October 2008 - February 2009: Getting familiar with AVI and the ideas developed in the project so far
November 2008 - February 2009: Initial ideas for the ABM-algorithm
March 2009 - August 2009: Internship in Rijswijk September 2009 - February 2010: Developement and implementation of algorithms/ Application to synthetic data

Milestones
 Future tasks

March 2010 - September 2010: Application to real world seismic data
September 2010 - March 2011: Investigation of relation between production and change of shapes March 2010 - September 2011: Completion and compilation of the thesis

Milestones

Future tasks

March 2010 - September 2010: Application to real world seismic data
September 2010 - March 2011: Investigation of relation between production and change of shapes
March 2010 - September 2011: Completion and compilation of
the thesis

Milestones

Future tasks

March 2010 - September 2010: Application to real world seismic data
September 2010 - March 2011: Investigation of relation between production and change of shapes March 2010 - September 2011: Completion and compilation of the thesis

Starting point - AVI
 Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X}=\left\{p_{1}, \ldots, p_{\mu}\right\} \in \mathbb{R}^{d}$ and threshold number ε.

Output

Approximate border basis G with respect to an order ideal \mathcal{O}.

Features of the original AVI algorithm

- Approximate border basis
- Set of polynomials, which have small evaluations at \mathbb{X}

Starting point - AVI
 Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X}=\left\{p_{1}, \ldots, p_{\mu}\right\} \in \mathbb{R}^{d}$ and threshold number ε.

Output

Approximate border basis G with respect to an order ideal \mathscr{O}.

Features of the original AVI algorithm

- Approximate border basis
- Set of polynomials, which have small evaluations at \mathbb{X}

Starting point - AVI
 Getting familiar with AVI

Input

Set of noisy measurements $\mathbb{X}=\left\{p_{1}, \ldots, p_{\mu}\right\} \in \mathbb{R}^{d}$ and threshold number ε.

Output

Approximate border basis G with respect to an order ideal \mathscr{O}.

Features of the original AVI algorithm

- Approximate border basis
- Set of polynomials, which have small evaluations at \mathbb{X}

Internship in Rijswijk

Goals

- Learn the very basics of seismics and seismic imaging
- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain \Rightarrow Seismic Unix

Internship in Rijswijk

Goals

- Learn the very basics of seismics and seismic imaging
- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain \Rightarrow Seismic Unix

Internship in Rijswijk

Goals

- Learn the very basics of seismics and seismic imaging
- Get in contact with people working on seismics
- Acquire capability to work with the conventional seismic toolchain \Rightarrow Seismic Unix

Motivation

ABM algorithm
The extended ABM algorithm

Outline

(1) Motivation

- General Setting
(2) Timeline
(3) Developement and implementation of algorithms
- ABM algorithm
- The extended ABM algorithm

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

ABM algorithm

The ABM algorithm

Algorithm (ABM)

Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subset \mathbb{R}^{\boldsymbol{n}}$, let $P=\mathbb{R}\left[x_{1}, \ldots, x_{\boldsymbol{n}}\right]$, let eval : $P \rightarrow \mathbb{R}^{\boldsymbol{s}}$ be the associated evaluation map $\operatorname{eval}(f)=\left(f\left(p_{1}\right), \ldots, f\left(p_{s}\right)\right)$ and let $\varepsilon>\tau>0$ be small numbers. With $\|\cdot\|$ we denote the euclidean norm. Moreover we choose a degree compatible term ordering σ.
(1) Start with lists $G=\emptyset, \mathscr{O}=[1]$, a matrix $M=(1, \ldots, 1)^{\text {tr }} \in \operatorname{Mat}_{s, 1}(\mathbb{R})$ and $d=0$.
(2) Increase d by one and let L be the list of terms in degree d in $\partial О$ ordered decreasingly with respect to σ. If $L=\emptyset$ return the pair (G, \mathscr{O}) and stop. Otherwise let $L=\left(t_{1}, \ldots, t_{\boldsymbol{l}}\right)$.
(3) Begin with $i:=1$ and calculate

$$
A=\operatorname{eval}\left(t_{\mathbf{i}}, M\right) \in \operatorname{Mat}_{\boldsymbol{s}, \mathbf{1}+\boldsymbol{m}}(\mathbb{R})
$$

4 Now calculate the least squares solution of $A x \approx \overrightarrow{0}$ with $\|x\|=1$, which is the smallest norm one eigenvector of $A^{\text {tr }} A$. Let us denote the solution with $s=\left(s_{1}, \ldots, s_{l}\right)$ and the smallest eigenvector with e.
(5) Now calculate $t=\sqrt{e}$ and check if $t<\varepsilon$. If so, we add $s_{1} t_{1}+\ldots+s_{l} t_{l}=0$ to G, otherwise we add $\boldsymbol{t}_{\boldsymbol{i}}$ to the order ideal \mathscr{O} and additionally eval $\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$ to M.
(6)Now we set $i:=i+1$. As long as $i<I$ go to step 3 .
(7) Continue with step 2.

Motivation

ABM algorithm
The extended ABM algorithm

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure $\varepsilon(\mathrm{ABM})$ versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic

 surface
The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure $\varepsilon(\mathrm{ABM})$ versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic
surface

The ABM algorithm

Differences between AVI and ABM

- Term by term (ABM) versus degree by degree (AVI)
- Different approach to calculate the polynomials. SVD in AVI, eigenvectors in ABM
- Less need for scaling of input data
- Direct error measure ε (ABM) versus indirect error measure (AVI)

The last property is important to control the "fit" of the algebraic surface

Outline

(1) Motivation

- General Setting
(2) Timeline
(3) Developement and implementation of algorithms
- ABM algorithm
- The extended ABM algorithm
(4) Applications
- Application of the extended ABM
- Application of the ABM algorithm

ABM algorithm

The extended ABM algorithm

The extended ABM algorithm

Algorithm (Extended ABM)

Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{\boldsymbol{s}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}, \mathbb{V}=\left(v_{1}, \ldots, v_{\boldsymbol{s}}\right) \subset \mathbb{R}$ let $P=\mathbb{R}\left[x_{1}, \ldots, x_{n+1}\right]$, let eval : $P \rightarrow \mathbb{R}^{\boldsymbol{s}}$ be the associated evaluation map eval $(f)=\left(f\left(p_{1}\right), \ldots, f\left(p_{s}\right)\right)$ and let $\varepsilon>\tau>0$ be small numbers. With $\|\cdot\|$ we denote the euclidean norm. Moreover we choose a degree compatible term ordering σ.
(1) Start with lists $G=\emptyset, \mathscr{O}=[1]$, a matrix $M=(1, \ldots, 1)^{\text {tr }} \in \operatorname{Mat}_{s, 1}(\mathbb{R})$ and $d=0$.
(2) Increase d by one and let L be the list of terms in degree d in $\partial \mathscr{O}$ ordered decreasingly with respect to σ. If $L=\emptyset$ return the pair $\left(G, \mathscr{O} \cup x_{n+1}\right)$ and stop. Otherwise let $L=\left(t_{1}, \ldots, t_{l}\right)$.
(3) Begin with $i:=1$ and calculate

$$
A=\operatorname{eval}\left(t_{\boldsymbol{i}}, M\right) \in \operatorname{Mat}_{\boldsymbol{s}, \mathbf{1}+\boldsymbol{m}}(\mathbb{R})
$$

4 Now calculate the least squares solution of $A x \approx \mathbb{V}$. If $\|\mathbb{V}\|<\tau$ calculate the solution of $A x \approx \overrightarrow{0},\|x\|=1$, which is the smallest norm one eigenvector of $A^{t r} A$. If $\|\mathbb{V}\| \geq \tau$ calculate it using the $Q R$ decomposition of A. Let us denote the solution with $s=\left(s_{1}, \ldots, s_{l}\right)$.
(5) Now calculate $t=\|A s-\mathbb{V}\|$ and check if $t<\varepsilon$. If so, we add $s_{1} t_{1}+\ldots+s_{\rho} t_{\rho}-x_{n+1}=0$ to G, otherwise we add $t_{\boldsymbol{i}}$ to the order ideal \mathscr{O} and additionally eval $\left(t_{i}\right)$ to M.
6 Now we set $i:=i+1$. As long as $i<I$ go to step 3 .
(7) Continue with step 2.

Motivation

The extended ABM algorithm Properties

Properties

- ABM is a special case of the extended ABM algorithm
- Allows the controlled modelling of one specific measurement
- Resulting polynomials are functions in the innut measurements - Direct control of the residual error

The extended ABM algorithm

 Properties
Properties

- ABM is a special case of the extended ABM algorithm
- Allows the controlled modelling of one specific measurement
- Resulting polynomials are functions in the input measurements
- Direct control of the residual error

Motivation

Implementation of algorithms

Implementation in ApCoCoALib

- All presented algorithms are implemented in the ApCoCoA library
- Access via
- the CoCoAL language for prototyping - $\mathrm{C}++$ for high performance

Motivation

Implementation of algorithms

Implementation in ApCoCoALib

- All presented algorithms are implemented in the ApCoCoA library
- Access via
- the CoCoAL language for prototyping
- C++ for high performance

Outline

(1) Motivation

- General Setting
(2) Timeline
(3) Developement and implementation of algorithms
- ABM algorithm
- The extended ABM algorithm
(4) Applications
- Application of the extended ABM
- Application of the ABM algorithm

Motivation
Timeline
Developement and implementation of algorithms Applications Summary

Application of the extended ABM
Application of the ABM algorithm

Recovery of velocities

Vn

Motivation
Timeline
Developement and implementation of algorithms Applications

Summary

Application of the extended ABM
Application of the ABM algorithm

Recovery of velocities

Similar example: Seismogram for 3 layers

Surface data ($\mathrm{dx}=5 \mathrm{~m}, \mathrm{z}=5 \mathrm{~m}$)

Recovery of velocities

A data driven approach

Use the extended ABM to model the hyperbolas.

Input: Points picked along a wavefront Output: Algebraic equations

In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations.

Recovery of velocities

A data driven approach

Use the extended ABM to model the hyperbolas.
Input: Points picked along a wavefront Output: Algebraic equations

In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations

Recovery of velocities
 A data driven approach

Use the extended ABM to model the hyperbolas.
Input: Points picked along a wavefront Output: Algebraic equations

In the simple case of parallel horizontal layers it is even possible to "read off" the velocities directly from the equations.

Motivation

Application of the extended ABM
Application of the ABM algorithm

Recovery of velocities

In the case of our example we obtain:

Motivation

Application of the extended ABM
Application of the ABM algorithm

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Motivation

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Recovery of velocities

Advantages

- No model assumed upfront
- The model was derived after all waves turned out to be hyperbolas
- Insensitive to noise
- Good way to check validity of model

Open problems

- Better interpretation of derived equations in more complex cases
- Application to real world data

Motivation
Timeline
Developement and implementation of algorithms Applications

Summary

Application of the extended ABM
Application of the ABM algorithm

Recovery of velocities

One of our goals - the Marmousi model

Outline

(1) Motivation

- General Setting
(2) Timeline

3 Developement and implementation of algorithms

- ABM algorithm
- The extended ABM algorithm

4 Applications

- Application of the extended ABM
- Application of the ABM algorithm

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 400 3D points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise
- Are not dense at all locations

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 4003 points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise
- Are not dense at all locations

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 4003 points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise - Are not dense at all locations

The recovery of a complex geometric structure Using noisy incomplete datasets

Example (Recovery of a torus)

- Represents a non conventional geometry/ hard to model with traditional methods
- We use a set of 4003 points, symbolizing the result of the seismic imaging process
- Points contain up to 20% noise
- Are not dense at all locations

Motivation
Timeline

Application of the extended ABM
Application of the ABM algorithm

The recovery of a complex geometric structure Visualized with MatLab

The recovery of a complex geometric structure

(1) Convert input data into CoCoA matrix format (list format)
(2) Apply ABM algorithm with $\varepsilon=4$. Runtime 1.4 seconds for 400 Points
(3) The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75 . Polynomials are ordered by increasing degree. Simpler structures come first.

- Already the first polynomial gives a reasonable answer!

The recovery of a complex geometric structure

(1) Convert input data into CoCoA matrix format (list format)
(2) Apply ABM algorithm with $\varepsilon=4$. Runtime 1.4 seconds for 400 Points.
(3) The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75
Polynomials are ordered by increasing degree. Simpler structures come first.
(4) Already the first polynomial gives a reasonable answer!

The recovery of a complex geometric structure

(1) Convert input data into CoCoA matrix format (list format)
(2) Apply ABM algorithm with $\varepsilon=4$. Runtime 1.4 seconds for 400 Points.
(3) The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75 .
Polynomials are ordered by increasing degree. Simpler structures come first.

- Already the first polynomial gives a reasonable answer!

The recovery of a complex geometric structure

(1) Convert input data into CoCoA matrix format (list format)
(2) Apply ABM algorithm with $\varepsilon=4$. Runtime 1.4 seconds for 400 Points.
(3) The algorithm returns a set of 45 polynomials with respect to an order ideal of size 75 . Polynomials are ordered by increasing degree. Simpler structures come first.
(3) Already the first polynomial gives a reasonable answer!

Motivation
Timeline

The recovery of a complex geometric structure Visualization of the first polynomial

$$
x^{4}+2 x^{2} y^{2}+y^{4}+2.3 x^{2} z^{2}+2.2 y^{2} z^{2}-276.8 x^{2}-278.2 y^{2}+10822.8
$$

The recovery of a complex geometric structure

So how good is the obtained result?

Original equation:

Compared to recovered equation:

Given only a set of noisy measurements we were able to recover a slightly deformed torus!

The recovery of a complex geometric structure

So how good is the obtained result?
Original equation:
$x^{4}+2 x^{2} y^{2}+y^{4}+2 x^{2} z^{2}+2 y^{2} z^{2}+z^{4}-250 x^{2}-250 y^{2}+150 z^{2}+5625$
Compared to recovered equation:

$$
x^{4}+2 x^{2} y^{2}+y^{4}+2.3 x^{2} z^{2}+2.2 y^{2} z^{2}-276.8 x^{2}-278.2 y^{2}+10822.8
$$

Given only a set of noisy measurements we were able to
recover a slightly deformed torus!

The recovery of a complex geometric structure

So how good is the obtained result?
Original equation:
$x^{4}+2 x^{2} y^{2}+y^{4}+2 x^{2} z^{2}+2 y^{2} z^{2}+z^{4}-250 x^{2}-250 y^{2}+150 z^{2}+5625$
Compared to recovered equation:
$x^{4}+2 x^{2} y^{2}+y^{4}+2.3 x^{2} z^{2}+2.2 y^{2} z^{2}-276.8 x^{2}-278.2 y^{2}+10822.8$
Given only a set of noisy measurements we were able to recover a slightly deformed torus!

Motivation

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure
- Compact representation: 400 points reduced to one equation

Motivation

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure
- Compact representation: 400 points reduced to one equation

The recovery of a complex geometric structure

Advantages

- No shape assumed upfront
- Recovery of a non conventional structure
- Compact representation: 400 points reduced to one equation

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data

- Outlook

- Anply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data

- Outlook

- Anply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Summary

- Overview of current situation
- (Extended) ABM algorithm
- Application to example data
- Outlook
- Apply algorithm to more complex/real data
- Improve algorithm(s) and surrounding toolchain
- Prove mathematical correctness of algorithms in PhD thesis

Motivation

Thank you for your attention

Any questions?

